THE UNIMODALITY OF THE r 3-CRANK OF 3-REGULAR OVERPARTITIONS

被引:0
|
作者
Hao, Robert xiaojian [1 ]
Shen, Erin yiying [2 ]
机构
[1] Nanjing Inst Technol, Coll Sci & Math, Nanjing 211167, Peoples R China
[2] Hohai Univ, Sch Math, Nanjing 210098, Peoples R China
关键词
Regular overpartition; r l-crank; monotonicity; unimodality; NUMBER;
D O I
10.4134/BKMS.b230269
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
An l - regular overpartition of n is an overpartition of n with no parts divisible by l. Recently, the authors introduced a partition statistic called r l -crank of l - regular overpartitions. Let M r l ( m, n ) denote the number of l - regular overpartitions of n with r l -crank m. In this paper, we investigate the monotonicity property and the unimodality of M r 3 ( m, n ). We prove that M r 3 ( m, n ) >= M r 3 ( m, n - 1) for any integers m and n >= 6 and the sequence { M r 3 ( m, n ) } | m |<= n is unimodal for all n >= 14.
引用
收藏
页码:621 / 635
页数:15
相关论文
共 50 条
  • [31] 3-Regular digraphs with optimum skew energy
    Gong, Shi-Cai
    Xu, Guang-Hui
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2012, 436 (03) : 465 - 471
  • [32] SYMMETRIES OF 3-REGULAR 3-CONNECTED PLANAR GRAPHS
    MOORE, EF
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1973, 20 (03): : A400 - A400
  • [33] On the minimum bisection of random 3-regular graphs
    Lichev, Lyuben
    Mitsche, Dieter
    ELECTRONIC JOURNAL OF COMBINATORICS, 2023, 30 (02):
  • [34] THE MAXIMUM GENUS OF A 3-REGULAR SIMPLICIAL GRAPH
    Li Deming\ Liu Yanpei
    AppliedMathematics:AJournalofChineseUniversities, 1999, (02) : 81 - 92
  • [35] The question of the collapsibility of random 3-regular graphs
    Spencer, JJ
    DISCRETE MATHEMATICS, 2001, 230 (1-3) : 253 - 253
  • [36] On 3-regular partitions with odd parts distinct
    D. S. Gireesh
    M. D. Hirschhorn
    M. S. Mahadeva Naika
    The Ramanujan Journal, 2017, 44 : 227 - 236
  • [37] On Potentially 3-regular graph graphic Sequences
    Hu, Lili
    Lai, Chunhui
    UTILITAS MATHEMATICA, 2009, 80 : 33 - 51
  • [38] On 3-regular partitions with odd parts distinct
    Gireesh, D. S.
    Hirschhorn, M. D.
    Naika, M. S. Mahadeva
    RAMANUJAN JOURNAL, 2017, 44 (01): : 227 - 236
  • [39] On inscribed trapezoids and affinely 3-regular maps
    Frick, Florian
    Harrison, Michael
    PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2024, 154 (04) : 1024 - 1032
  • [40] Sampling Edge Covers in 3-Regular Graphs
    Bezakova, Ivona
    Rummler, William A.
    MATHEMATICAL FOUNDATIONS OF COMPUTER SCIENCE 2009, 2009, 5734 : 137 - 148