THE UNIMODALITY OF THE r 3-CRANK OF 3-REGULAR OVERPARTITIONS

被引:0
|
作者
Hao, Robert xiaojian [1 ]
Shen, Erin yiying [2 ]
机构
[1] Nanjing Inst Technol, Coll Sci & Math, Nanjing 211167, Peoples R China
[2] Hohai Univ, Sch Math, Nanjing 210098, Peoples R China
关键词
Regular overpartition; r l-crank; monotonicity; unimodality; NUMBER;
D O I
10.4134/BKMS.b230269
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
An l - regular overpartition of n is an overpartition of n with no parts divisible by l. Recently, the authors introduced a partition statistic called r l -crank of l - regular overpartitions. Let M r l ( m, n ) denote the number of l - regular overpartitions of n with r l -crank m. In this paper, we investigate the monotonicity property and the unimodality of M r 3 ( m, n ). We prove that M r 3 ( m, n ) >= M r 3 ( m, n - 1) for any integers m and n >= 6 and the sequence { M r 3 ( m, n ) } | m |<= n is unimodal for all n >= 14.
引用
收藏
页码:621 / 635
页数:15
相关论文
共 50 条
  • [41] On a class of Hamiltonian laceable 3-regular graphs
    Alspach, B
    Chen, CC
    McAvaney, K
    DISCRETE MATHEMATICS, 1996, 151 (1-3) : 19 - 38
  • [42] 3-Regular subgraphs and (3,1)-colorings of 4-regular pseudographs
    Bernshtein A.Y.
    Bernshtein, A. Yu., 1600, Izdatel'stvo Nauka (08): : 458 - 466
  • [43] LONGEST CYCLES IN 3-CONNECTED 3-REGULAR GRAPHS
    BONDY, JA
    SIMONOVITS, M
    CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 1980, 32 (04): : 987 - 992
  • [44] New parity results for 3-regular partitions
    Yao, Olivia X. M.
    QUAESTIONES MATHEMATICAE, 2023, 46 (03) : 465 - 471
  • [45] The maximum genus of a 3-regular simplicial graph
    Deming L.
    Yanpei L.
    Applied Mathematics-A Journal of Chinese Universities, 1999, 14 (2) : 203 - 214
  • [46] On a class of Hamiltonian laceable 3-regular graphs
    Alspach, Brian
    Chen, C.C.
    McAvaney, Kevin
    1996, Elsevier (151) : 1 - 3
  • [47] On 3-Regular Subgraphs in Cartesian Product of Paths
    Miao, Lu
    Yang, Weihua
    JOURNAL OF INTERCONNECTION NETWORKS, 2018, 18 (2-3) : 2 - 3
  • [48] On 3-regular 4-ordered graphs
    Meszaros, Karola
    DISCRETE MATHEMATICS, 2008, 308 (11) : 2149 - 2155
  • [49] Properties of the corolla polynomial of a 3-regular graph
    Kreimer, Dirk
    Yeats, Karen
    ELECTRONIC JOURNAL OF COMBINATORICS, 2013, 20 (01):
  • [50] ON 3-AND 9-REGULAR OVERPARTITIONS MODULO POWERS OF 3
    Bharadwaj, H. S. Sumanth
    Hemanthkumar, B.
    Naika, M. S. Mahadeva
    COLLOQUIUM MATHEMATICUM, 2018, 154 (01) : 121 - 130