Hourly PM2.5 Concentration Prediction Based on Empirical Mode Decomposition and Geographically Weighted Neural Network

被引:0
|
作者
Chen, Yan [1 ]
Hu, Chunchun [1 ]
机构
[1] Wuhan Univ, Sch Geodesy & Geomat, Wuhan 430079, Peoples R China
关键词
PM2.5 concentration prediction; empirical mode decomposition; minimal-redundancy-maximal-relevance; geographically weighted neural network; SUPPORT VECTOR MACHINE; FEATURE-SELECTION; AIR-POLLUTION; VEHICLES;
D O I
10.3390/ijgi13030079
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Accurate prediction of fine particulate matter (PM2.5) concentration is crucial for improving environmental conditions and effectively controlling air pollution. However, some existing studies could ignore the nonlinearity and spatial correlation of time series data observed from stations, and it is difficult to avoid the redundancy between features during feature selection. To further improve the accuracy, this study proposes a hybrid model based on empirical mode decomposition (EMD), minimal-redundancy-maximal-relevance (mRMR), and geographically weighted neural network (GWNN) for hourly PM2.5 concentration prediction, named EMD-mRMR-GWNN. Firstly, the original PM2.5 concentration sequence with distinct nonlinearity and non-stationarity is decomposed into multiple intrinsic mode functions (IMFs) and a residual component using EMD. IMFs are further classified and reconstructed into high-frequency and low-frequency components using the one-sample t-test. Secondly, the optimal feature subset is selected from high-frequency and low-frequency components with mRMR for the prediction model, thus holding the correlation between features and the target variable and reducing the redundancy among features. Thirdly, the residual component is predicted with the simple moving average (SMA) due to its strong trend and autocorrelation, and GWNN is used to predict the high-frequency and low-frequency components. The final prediction of the PM2.5 concentration value is calculated by an artificial neural network (ANN) composed of the predictive values of each component. PM2.5 concentration prediction experiments in three representational cities, such as Beijing, Wuhan, and Kunming were carried out. The proposed model achieved high accuracy with a coefficient of determination greater than 0.92 in forecasting PM2.5 concentration for the next 1 h. We compared this model with four baseline models in forecasting PM2.5 concentration for the next few hours and found it performed the best in PM2.5 concentration prediction. The experimental results indicated the proposed model can improve prediction accuracy.
引用
收藏
页数:19
相关论文
共 50 条
  • [31] Application of TCN-biGRU neural network in PM2.5 concentration prediction
    Shi, Ting
    Li, Pengyu
    Yang, Wu
    Qi, Ailin
    Qiao, Junfei
    ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH, 2023, 30 (56) : 119506 - 119517
  • [32] Predicting hourly PM2.5 concentrations based on random forest and ensemble neural network
    Shang, Zhigen
    He, Jianqiang
    2018 CHINESE AUTOMATION CONGRESS (CAC), 2018, : 2341 - 2345
  • [33] Empirical Analysis of Tree-Based Models for PM2.5 Concentration Prediction
    Lee, Juhyun
    Hong, Yoojin
    Lee, Younkwan
    Kim, Hyun Soo
    Song, Chul Han
    Kim, Du Yong
    Jeon, Moongu
    2019 13TH INTERNATIONAL CONFERENCE ON SIGNAL PROCESSING AND COMMUNICATION SYSTEMS (ICSPCS), 2019,
  • [34] An ensemble long short-term memory neural network for hourly PM2.5 concentration forecasting
    Bai, Yun
    Zeng, Bo
    Li, Chuan
    Zhang, Jin
    CHEMOSPHERE, 2019, 222 : 286 - 294
  • [35] Prediction of PM2.5 based on Elman neural network with chaos theory
    Hu Zhiqiang
    Li Wenjing
    Qiao Junfei
    PROCEEDINGS OF THE 35TH CHINESE CONTROL CONFERENCE 2016, 2016, : 3573 - 3578
  • [36] PM2.5 prediction based on dynamic spatiotemporal graph neural network
    Liao, Haibin
    Wu, Mou
    Yuan, Li
    Hu, Yiyang
    Gong, Haowei
    APPLIED INTELLIGENCE, 2024, 54 (22) : 11933 - 11948
  • [37] An improved geographically weighted regression model for PM2.5 concentration estimation in large areas
    Zhai, Liang
    Li, Shuang
    Zou, Bin
    Sang, Huiyong
    Fang, Xin
    Xu, Shan
    ATMOSPHERIC ENVIRONMENT, 2018, 181 : 145 - 154
  • [38] Study on prediction of atmospheric PM2.5 based on RBF neural network
    Zheng Haiming
    Shang Xiaoxiao
    2013 FOURTH INTERNATIONAL CONFERENCE ON DIGITAL MANUFACTURING AND AUTOMATION (ICDMA), 2013, : 1287 - 1289
  • [39] Long-term PM2.5 concentration prediction based on improved empirical mode decomposition and deep neural network combined with noise reduction auto-encoder- A case study in Beijing
    Teng, Mengfan
    Li, Siwei
    Yang, Jie
    Wang, Shuo
    Fan, Chunying
    Ding, Yu
    Dong, Jiaxin
    Lin, Hao
    Wang, Shansi
    JOURNAL OF CLEANER PRODUCTION, 2023, 428
  • [40] A Short-Term Prediction Model of PM2.5 Concentration Based on Deep Learning and Mode Decomposition Methods
    Wei, Jun
    Yang, Fan
    Ren, Xiao-Chen
    Zou, Silin
    APPLIED SCIENCES-BASEL, 2021, 11 (15):