Hourly PM2.5 Concentration Prediction Based on Empirical Mode Decomposition and Geographically Weighted Neural Network

被引:0
|
作者
Chen, Yan [1 ]
Hu, Chunchun [1 ]
机构
[1] Wuhan Univ, Sch Geodesy & Geomat, Wuhan 430079, Peoples R China
关键词
PM2.5 concentration prediction; empirical mode decomposition; minimal-redundancy-maximal-relevance; geographically weighted neural network; SUPPORT VECTOR MACHINE; FEATURE-SELECTION; AIR-POLLUTION; VEHICLES;
D O I
10.3390/ijgi13030079
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Accurate prediction of fine particulate matter (PM2.5) concentration is crucial for improving environmental conditions and effectively controlling air pollution. However, some existing studies could ignore the nonlinearity and spatial correlation of time series data observed from stations, and it is difficult to avoid the redundancy between features during feature selection. To further improve the accuracy, this study proposes a hybrid model based on empirical mode decomposition (EMD), minimal-redundancy-maximal-relevance (mRMR), and geographically weighted neural network (GWNN) for hourly PM2.5 concentration prediction, named EMD-mRMR-GWNN. Firstly, the original PM2.5 concentration sequence with distinct nonlinearity and non-stationarity is decomposed into multiple intrinsic mode functions (IMFs) and a residual component using EMD. IMFs are further classified and reconstructed into high-frequency and low-frequency components using the one-sample t-test. Secondly, the optimal feature subset is selected from high-frequency and low-frequency components with mRMR for the prediction model, thus holding the correlation between features and the target variable and reducing the redundancy among features. Thirdly, the residual component is predicted with the simple moving average (SMA) due to its strong trend and autocorrelation, and GWNN is used to predict the high-frequency and low-frequency components. The final prediction of the PM2.5 concentration value is calculated by an artificial neural network (ANN) composed of the predictive values of each component. PM2.5 concentration prediction experiments in three representational cities, such as Beijing, Wuhan, and Kunming were carried out. The proposed model achieved high accuracy with a coefficient of determination greater than 0.92 in forecasting PM2.5 concentration for the next 1 h. We compared this model with four baseline models in forecasting PM2.5 concentration for the next few hours and found it performed the best in PM2.5 concentration prediction. The experimental results indicated the proposed model can improve prediction accuracy.
引用
收藏
页数:19
相关论文
共 50 条
  • [21] Prediction of PM2.5 Hour Concentration Based on U-net Neural Network
    Li Y.
    Zhai W.
    Yan H.
    Zhu D.
    Tong X.
    Cheng C.
    Zhai, Weixin (pkuzhaiweixin@gmail.com), 1600, Peking University (56): : 796 - 804
  • [22] Prediction algorithm of PM2.5 mass concentration based on adaptive BP neural network
    Yegang Chen
    Computing, 2018, 100 : 825 - 838
  • [23] Prediction of PM2.5 concentration based on a CNN-LSTM neural network algorithm
    Bai, Xuesong
    Zhang, Na
    Cao, Xiaoyi
    Chen, Wenqian
    PEERJ, 2024, 12
  • [24] Prediction algorithm of PM2.5 mass concentration based on adaptive BP neural network
    Chen, Yegang
    COMPUTING, 2018, 100 (08) : 825 - 838
  • [25] Prediction of Hourly PM2.5 and PM10 Concentrations in Chongqing City in China Based on Artificial Neural Network
    Guo, Qingchun
    He, Zhenfang
    Wang, Zhaosheng
    AEROSOL AND AIR QUALITY RESEARCH, 2023, 23 (06)
  • [26] Using a Citizen-installed Network of PM2.5 Sensors to Predict Hourly PM2.5 Airborne Concentration
    Filip Nastić
    Nebojša Jurišević
    Davor Končalović
    Water, Air, & Soil Pollution, 2025, 236 (2)
  • [27] An Improved Attention-Based Integrated Deep Neural Network for PM2.5 Concentration Prediction
    Shi, Pengfei
    Fang, Xiaolong
    Ni, Jianjun
    Zhu, Jinxiu
    APPLIED SCIENCES-BASEL, 2021, 11 (09):
  • [28] Research on PM2.5 concentration prediction algorithm based on graph convolutional neural network model
    Liu, Xiangyu
    Ren, Ge
    Guo, Jiashuo
    Hu, Yuxin
    Lin, Hong
    Proceedings of SPIE - The International Society for Optical Engineering, 2024, 13291
  • [29] Prediction of PM2.5 concentration based on the weighted RF-LSTM model
    Ding, Weifu
    Sun, Huihui
    EARTH SCIENCE INFORMATICS, 2023, 16 (04) : 3023 - 3037
  • [30] Prediction of PM2.5 concentration based on the weighted RF-LSTM model
    Weifu Ding
    Huihui Sun
    Earth Science Informatics, 2023, 16 : 3023 - 3037