A Short-Term Prediction Model of PM2.5 Concentration Based on Deep Learning and Mode Decomposition Methods

被引:11
|
作者
Wei, Jun [1 ,2 ]
Yang, Fan [3 ]
Ren, Xiao-Chen [4 ]
Zou, Silin [4 ]
机构
[1] Sun Yat Sen Univ, Sch Atmospher Sci, Guangdong Prov Key Lab Climate Change & Nat Disas, Guangzhou 510275, Peoples R China
[2] Southern Marine Sci & Engn Guangdong Lab Zhuhai, Guangzhou 519082, Peoples R China
[3] Zhuhai Marine Environm Monitoring Cent Stn State, Zhuhai 519015, Peoples R China
[4] Peking Univ, Dept Atmospher Sci, Beijing 100871, Peoples R China
来源
APPLIED SCIENCES-BASEL | 2021年 / 11卷 / 15期
基金
中国国家自然科学基金;
关键词
PM2.5; neural network; machine learning; mode decomposition; AIR-POLLUTION; ENSEMBLE;
D O I
10.3390/app11156915
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Based on a set of deep learning and mode decomposition methods, a short-term prediction model for PM2.5 concentration for Beijing city is established in this paper. An ensemble empirical mode decomposition (EEMD) algorithm is first used to decompose the original PM2.5 timeseries to several high- to low-frequency intrinsic mode functions (IMFs). Each IMF component is then trained and predicted by a combination of three neural networks: back propagation network (BP), long short-term memory network (LSTM), and a hybrid network of a convolutional neural network (CNN) + LSTM. The results showed that both BP and LSTM are able to fit the low-frequency IMFs very well, and the total prediction errors of the summation of all IMFs are remarkably reduced from 21 g/m(3) in the single BP model to 4.8 g/m(3) in the EEMD + BP model. Spatial information from 143 stations surrounding Beijing city is extracted by CNN, which is then used to train the CNN+LSTM. It is found that, under extreme weather conditions of PM2.5 < 35 g/m(3) and PM2.5 > 150 g/m(3), the prediction errors of the CNN + LSTM model are improved by similar to 30% compared to the single LSTM model. However, the prediction of the very high-frequency IMF mode (IMF-1) remains a challenge for all neural networks, which might be due to microphysical turbulences and chaotic processes that cannot be resolved by the above-mentioned neural networks based on variable-variable relationship.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] Short-term prediction of PM2.5 pollution with deep learning methods
    Ayturan, Y. A.
    Ayturan, Z. C.
    Altun, H. O.
    Kongoli, C.
    Tuncez, F. D.
    Dursun, S.
    Ozturk, A.
    GLOBAL NEST JOURNAL, 2020, 22 (01): : 126 - 131
  • [2] Short-Term Prediction of PM2.5 Using LSTM Deep Learning Methods
    Kristiani, Endah
    Lin, Hao
    Jwu-Rong Lin
    Yen-Hsun Chuang
    Chin-Yin Huang
    Chao-Tung Yang
    SUSTAINABILITY, 2022, 14 (04)
  • [3] Short-term prediction of PM2.5 concentration by hybrid neural network based on sequence decomposition
    Wu, Xiaoxuan
    Zhu, Jun
    Wen, Qiang
    PLOS ONE, 2024, 19 (05):
  • [4] A deep learning model for PM2.5 concentration prediction
    Zhang, Zhendong
    Ma, Xiang
    Yan, Ke
    2021 IEEE INTL CONF ON DEPENDABLE, AUTONOMIC AND SECURE COMPUTING, INTL CONF ON PERVASIVE INTELLIGENCE AND COMPUTING, INTL CONF ON CLOUD AND BIG DATA COMPUTING, INTL CONF ON CYBER SCIENCE AND TECHNOLOGY CONGRESS DASC/PICOM/CBDCOM/CYBERSCITECH 2021, 2021, : 428 - 433
  • [5] Long Short-Term Memory based PM2.5 Concentration Prediction Method
    Jiang, Nan
    Zheng, Xiuping
    Sun, Li'e
    Zheng, Hui
    Zheng, Qinghe
    ENGINEERING LETTERS, 2021, 29 (02) : 765 - 774
  • [6] A hybrid Daily PM2.5 concentration prediction model based on secondary decomposition algorithm, mode recombination technique and deep learning
    Wei Sun
    Zhiwei Xu
    Stochastic Environmental Research and Risk Assessment, 2022, 36 : 1143 - 1162
  • [7] A hybrid Daily PM2.5 concentration prediction model based on secondary decomposition algorithm, mode recombination technique and deep learning
    Sun, Wei
    Xu, Zhiwei
    STOCHASTIC ENVIRONMENTAL RESEARCH AND RISK ASSESSMENT, 2022, 36 (04) : 1143 - 1162
  • [8] Short-term prediction of urban PM2.5 based on a hybrid modified variational mode decomposition and support vector regression model
    Junwen Chu
    Yingchao Dong
    Xiaoxia Han
    Jun Xie
    Xinying Xu
    Gang Xie
    Environmental Science and Pollution Research, 2021, 28 : 56 - 72
  • [9] Short-Term PM2.5 Concentration Prediction by Combining GNSS and Meteorological Factors
    Wen, Hongfeng
    Dang, Yamin
    Li, Liwei
    IEEE ACCESS, 2020, 8 : 115202 - 115216
  • [10] A novel hybrid decomposition-and-ensemble model based on CEEMD and GWO for short-term PM2.5 concentration forecasting
    Niu, Mingfei
    Wang, Yufang
    Sun, Shaolong
    Li, Yongwu
    ATMOSPHERIC ENVIRONMENT, 2016, 134 : 168 - 180