The Trajectory Interval Forest Classifier for Trajectory Classification

被引:1
|
作者
Landi, Cristiano [1 ]
Guidotti, Riccardo [1 ]
Monreale, Anna [1 ]
Nanni, Mirco [2 ]
机构
[1] Univ Pisa, Pisa, Italy
[2] CNR, ISTI, Pisa, Italy
关键词
GPS Trajectory Classification; Mobility Data Analysis;
D O I
10.1145/3589132.3625617
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
GPS devices generate spatio-temporal trajectories for different types of moving objects. Scientists can exploit them to analyze migration patterns, manage city traffic, monitor the spread of diseases, etc. Many current state-of-the-art models that use this data type require a not negligible running time to be trained. To overcome this issue, we propose the Trajectory Interval Forest (TIF) classifier, an efficient model with high throughput. TIF works by calculating various mobility-related statistics over a set of randomly selected intervals. These statistics are used to create a tabular representation of the data, which can be used as input for any classical classifier. Our results show that TIF is comparable to or better than state-of-art in terms of accuracy and is orders of magnitude faster.
引用
收藏
页码:378 / 381
页数:4
相关论文
共 50 条
  • [1] The Canonical Interval Forest (CIF) Classifier for Time Series Classification
    Middlehurst, Matthew
    Large, James
    Bagnall, Anthony
    2020 IEEE INTERNATIONAL CONFERENCE ON BIG DATA (BIG DATA), 2020, : 188 - 195
  • [2] Adversarially Learned Abnormal Trajectory Classifier
    Roy, Pankaj Raj
    Bilodeau, Guillaume-Alexandre
    2019 16TH CONFERENCE ON COMPUTER AND ROBOT VISION (CRV 2019), 2019, : 65 - 72
  • [3] Online trajectory classification
    Sas, C
    O'Hare, G
    Reilly, R
    COMPUTATIONAL SCIENCE - ICCS 2003, PT III, PROCEEDINGS, 2003, 2659 : 1035 - 1044
  • [4] Transformer Networks for Trajectory Classification
    Bae, Keywoong
    Lee, Suan
    Lee, Wookey
    2022 IEEE INTERNATIONAL CONFERENCE ON BIG DATA AND SMART COMPUTING (IEEE BIGCOMP 2022), 2022, : 331 - 333
  • [5] Trajectory classification using HMMs
    Mlich, Jozef
    Zemcik, Pavel
    Jirik, Leos
    WSCG 2009, COMMUNICATION PAPERS PROCEEDINGS, 2009, : 67 - 72
  • [6] Trajectory Data Classification: A Review
    Bian, Jiang
    Tian, Dayong
    Tang, Yuanyan
    Tao, Dacheng
    ACM TRANSACTIONS ON INTELLIGENT SYSTEMS AND TECHNOLOGY, 2019, 10 (04)
  • [7] Trajectory-based support vector multicategory classifier
    Lee, D
    Lee, J
    ADVANCES IN NEURAL NETWORKS - ISNN 2005, PT 1, PROCEEDINGS, 2005, 3496 : 857 - 862
  • [8] Interval trajectory tracking for AGV base on MPC
    Xu, Hang
    Zhu, Jin
    PROCEEDINGS OF THE 38TH CHINESE CONTROL CONFERENCE (CCC), 2019, : 2835 - 2839
  • [9] Continuous Change Detection and Classification-Spectral Trajectory Breakpoint Recognition for Forest Monitoring
    Zhang, Yangjian
    Wang, Li
    Zhou, Quan
    Tang, Feng
    Zhang, Bo
    Huang, Ni
    Nath, Biswajit
    LAND, 2022, 11 (04)
  • [10] Interval timing and trajectory in unequal amplitude movements
    Doumas, Michail
    Wing, Alan M.
    Wood, Kelly
    EXPERIMENTAL BRAIN RESEARCH, 2008, 189 (01) : 49 - 60