Minimal 5(2)-ideal Lagrangian submanifolds and the quaternionic projective space

被引:1
|
作者
Dekimpe, Kristof [1 ]
Van der Veken, Joeri [1 ]
Vrancken, Luc [1 ,2 ]
机构
[1] Katholieke Univ Leuven, Dept Math, Celestijnenlaan 200B,Box 2400, B-3001 Leuven, Belgium
[2] Univ Polytech Hauts France, LMI Lab Math Ingenieur, Campus Mont Houy, F-59313 Valenciennes, France
基金
中国国家自然科学基金;
关键词
Ideal Lagrangian submanifolds; Quaternionic projective space; Anti -symmetric surfaces;
D O I
10.1016/j.geomphys.2023.104857
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We construct an explicit map from a generic minimal 5(2)-ideal Lagrangian submanifold of Cn to the quaternionic projective space HPn-1, whose image is either a point or a minimal totally complex surface. A stronger result is obtained for n = 3, since the above mentioned map then provides a one-to-one correspondence between minimal 5(2)-ideal Lagrangian submanifolds of C3 and minimal totally complex surfaces in HP2 which are moreover anti-symmetric. Finally, we also show that there is a one-to-one correspondence between such surfaces in HP2 and minimal Lagrangian surfaces in CP2.& COPY; 2023 Elsevier B.V. All rights reserved.
引用
收藏
页数:16
相关论文
共 50 条
  • [31] Conformally flat, minimal, Lagrangian submanifolds in complex space forms
    Miroslava Antić
    Luc Vrancken
    Science China Mathematics, 2022, 65 : 1641 - 1660
  • [32] On second order minimal Lagrangian submanifolds in complex space forms
    DONG Yuxin & LU Guozhen Institute of Mathematics
    Science China Mathematics, 2005, (11) : 1505 - 1516
  • [33] On second order minimal Lagrangian submanifolds in complex space forms
    Dong, YX
    Lu, GZ
    SCIENCE IN CHINA SERIES A-MATHEMATICS, 2005, 48 (11): : 1505 - 1516
  • [34] Conformally flat, minimal, Lagrangian submanifolds in complex space forms
    Antic, Miroslava
    Vrancken, Luc
    SCIENCE CHINA-MATHEMATICS, 2022, 65 (08) : 1641 - 1660
  • [35] Hamiltonian-minimal Lagrangian submanifolds in complex space forms
    Castro, Ildefonso
    Li, Haizhong
    Urbano, Francisco
    PACIFIC JOURNAL OF MATHEMATICS, 2006, 227 (01) : 43 - 63
  • [36] Conformally flat, minimal, Lagrangian submanifolds in complex space forms
    Miroslava Anti?
    Luc Vrancken
    Science China(Mathematics), 2022, 65 (08) : 1641 - 1660
  • [37] Minimal two-spheres with constant curvature in the quaternionic projective space
    Fei, Jie
    Peng, Chiakuei
    Xu, Xiaowei
    SCIENCE CHINA-MATHEMATICS, 2020, 63 (05) : 993 - 1006
  • [38] Minimal two-spheres with constant curvature in the quaternionic projective space
    Jie Fei
    Chiakuei Peng
    Xiaowei Xu
    ScienceChina(Mathematics), 2020, 63 (05) : 993 - 1006
  • [39] Minimal two-spheres with constant curvature in the quaternionic projective space
    Jie Fei
    Chiakuei Peng
    Xiaowei Xu
    Science China Mathematics, 2020, 63 : 993 - 1006
  • [40] C-projective symmetries of submanifolds in quaternionic geometry
    Aleksandra Borówka
    Henrik Winther
    Annals of Global Analysis and Geometry, 2019, 55 : 395 - 416