On second order minimal Lagrangian submanifolds in complex space forms

被引:0
|
作者
Dong, YX [1 ]
Lu, GZ
机构
[1] Fudan Univ, Inst Math, Shanghai 200433, Peoples R China
[2] Wayne State Univ, Dept Math, Detroit, MI 48202 USA
来源
SCIENCE IN CHINA SERIES A-MATHEMATICS | 2005年 / 48卷 / 11期
基金
中国国家自然科学基金;
关键词
exterior differential systems; minimal Lagrangian submanifold;
D O I
10.1360/04ys0197
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we determine all second order minimal Lagrangian submanifolds in complex space forms whose cubic forms have the largest non-trivial continuous symmetries. We describe these minimal Lagrangian submanifolds from the viewpoint of Bryant and study their geometric properties.
引用
收藏
页码:1505 / 1516
页数:12
相关论文
共 50 条
  • [1] On second order minimal Lagrangian submanifolds in complex space forms
    DONG Yuxin & LU Guozhen Institute of Mathematics
    [J]. Science China Mathematics, 2005, (11) : 1505 - 1516
  • [2] On second order minimal Lagrangian submanifolds in complex space forms
    DONG Yuxin LU Guozhen Institute of Mathematics Fudan University Shanghai China Department of MathematicsWayne State University Detroit MI
    [J]. Science in China,Ser.A., 2005, Ser.A.2005 (11) - 1516
  • [3] On Product Minimal Lagrangian Submanifolds in Complex Space Forms
    Xiuxiu Cheng
    Zejun Hu
    Marilena Moruz
    Luc Vrancken
    [J]. The Journal of Geometric Analysis, 2021, 31 : 1934 - 1964
  • [4] On Product Minimal Lagrangian Submanifolds in Complex Space Forms
    Cheng, Xiuxiu
    Hu, Zejun
    Moruz, Marilena
    Vrancken, Luc
    [J]. JOURNAL OF GEOMETRIC ANALYSIS, 2021, 31 (02) : 1934 - 1964
  • [5] On second order minimal Lagrangian sub manifolds in complex space forms
    Yuxin Dong
    Guozhen Lu
    [J]. Science in China Series A: Mathematics, 2005, 48 : 1505 - 1516
  • [6] Conformally flat, minimal, Lagrangian submanifolds in complex space forms
    Miroslava Antić
    Luc Vrancken
    [J]. Science China Mathematics, 2022, 65 : 1641 - 1660
  • [7] Hamiltonian-minimal Lagrangian submanifolds in complex space forms
    Castro, Ildefonso
    Li, Haizhong
    Urbano, Francisco
    [J]. PACIFIC JOURNAL OF MATHEMATICS, 2006, 227 (01) : 43 - 63
  • [8] Conformally flat, minimal, Lagrangian submanifolds in complex space forms
    Antic, Miroslava
    Vrancken, Luc
    [J]. SCIENCE CHINA-MATHEMATICS, 2022, 65 (08) : 1641 - 1660
  • [9] Conformally flat, minimal, Lagrangian submanifolds in complex space forms
    Miroslava Anti?
    Luc Vrancken
    [J]. Science China Mathematics, 2022, 65 (08) : 1641 - 1660
  • [10] On minimal Lagrangian submanifolds in complex space forms with semi-parallel second fundamental form
    Li, Cece
    Xing, Cheng
    [J]. INTERNATIONAL JOURNAL OF MATHEMATICS, 2024,