Minimal 5(2)-ideal Lagrangian submanifolds and the quaternionic projective space

被引:1
|
作者
Dekimpe, Kristof [1 ]
Van der Veken, Joeri [1 ]
Vrancken, Luc [1 ,2 ]
机构
[1] Katholieke Univ Leuven, Dept Math, Celestijnenlaan 200B,Box 2400, B-3001 Leuven, Belgium
[2] Univ Polytech Hauts France, LMI Lab Math Ingenieur, Campus Mont Houy, F-59313 Valenciennes, France
基金
中国国家自然科学基金;
关键词
Ideal Lagrangian submanifolds; Quaternionic projective space; Anti -symmetric surfaces;
D O I
10.1016/j.geomphys.2023.104857
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We construct an explicit map from a generic minimal 5(2)-ideal Lagrangian submanifold of Cn to the quaternionic projective space HPn-1, whose image is either a point or a minimal totally complex surface. A stronger result is obtained for n = 3, since the above mentioned map then provides a one-to-one correspondence between minimal 5(2)-ideal Lagrangian submanifolds of C3 and minimal totally complex surfaces in HP2 which are moreover anti-symmetric. Finally, we also show that there is a one-to-one correspondence between such surfaces in HP2 and minimal Lagrangian surfaces in CP2.& COPY; 2023 Elsevier B.V. All rights reserved.
引用
收藏
页数:16
相关论文
共 50 条
  • [21] Hamiltonian stability of certain minimal Lagrangian submanifolds in complex projective spaces
    Amarzaya, A
    Ohnita, Y
    TOHOKU MATHEMATICAL JOURNAL, 2003, 55 (04) : 583 - 610
  • [22] ON TOTALLY REAL MINIMAL SUBMANIFOLDS IN COMPLEX PROJECTIVE SPACE
    Chao, Xiaoli
    Li, Yaowen
    ARCHIVUM MATHEMATICUM, 2005, 41 (01): : 107 - 116
  • [23] Totally real minimal submanifolds in a Quaternion projective space
    Liu, XM
    PROCEEDINGS OF THE JAPAN ACADEMY SERIES A-MATHEMATICAL SCIENCES, 1996, 72 (10) : 238 - 239
  • [24] On Product Minimal Lagrangian Submanifolds in Complex Space Forms
    Xiuxiu Cheng
    Zejun Hu
    Marilena Moruz
    Luc Vrancken
    The Journal of Geometric Analysis, 2021, 31 : 1934 - 1964
  • [25] On Product Minimal Lagrangian Submanifolds in Complex Space Forms
    Cheng, Xiuxiu
    Hu, Zejun
    Moruz, Marilena
    Vrancken, Luc
    JOURNAL OF GEOMETRIC ANALYSIS, 2021, 31 (02) : 1934 - 1964
  • [26] QR-submanifolds of maximal QR-dimension in quaternionic projective space
    Kim, HS
    Pak, JS
    JOURNAL OF THE KOREAN MATHEMATICAL SOCIETY, 2005, 42 (04) : 655 - 672
  • [27] Classification of Casorati ideal Lagrangian submanifolds in complex space forms
    Aquib, Mohd.
    Lee, Jae Won
    Vilcu, Gabriel-Eduard
    Yoon, Dae Won
    DIFFERENTIAL GEOMETRY AND ITS APPLICATIONS, 2019, 63 : 30 - 49
  • [28] LAGRANGIAN SUBMANIFOLDS IN COMPLEX PROJECTIVE SPACE WITH PARALLEL SECOND FUNDAMENTAL FORM
    Dillen, Franki
    Li, Haizhong
    Vrancken, Luc
    Wang, Xianfeng
    PACIFIC JOURNAL OF MATHEMATICS, 2012, 255 (01) : 79 - 115
  • [29] Special Lagrangian Submanifolds and Cohomogeneity One Actions on the Complex Projective Space
    Arai, Masato
    Baba, Kurando
    TOKYO JOURNAL OF MATHEMATICS, 2019, 42 (01) : 255 - 284
  • [30] GLOBAL PINCHING THEOREMS FOR MINIMAL SUBMANIFOLDS IN A COMPLEX PROJECTIVE SPACE
    Pu, Dong
    Xu, Hongwei
    ASIAN JOURNAL OF MATHEMATICS, 2021, 25 (02) : 277 - 294