pyInfinityFlow: optimized imputation and analysis of high-dimensional flow cytometry data for millions of cells

被引:1
|
作者
Ferchen, Kyle [1 ,2 ]
Salomonis, Nathan [3 ,4 ]
Grimes, H. Leighton [2 ,4 ,5 ]
机构
[1] Univ Cincinnati, Canc & Cellular Biol, Cincinnati, OH 45229 USA
[2] Cincinnati Childrens Hosp Med Ctr, Immunobiol, Cincinnati, OH 45229 USA
[3] Cincinnati Childrens Hosp Med Ctr, Biomed Informat, Cincinnati, OH 45229 USA
[4] Univ Cincinnati, Dept Pediat, Cincinnati, OH 45229 USA
[5] Cincinnati Childrens Hosp Med Ctr, Expt Hematol & Canc Biol, Cincinnati, OH 45229 USA
基金
美国国家卫生研究院;
关键词
D O I
10.1093/bioinformatics/btad287
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Motivation: While conventional flow cytometry is limited to dozens of markers, new experimental and computational strategies, such as Infinity Flow, allow for the generation and imputation of hundreds of cell surface protein markers in millions of cells. Here, we describe an end-to-end analysis workflow for Infinity Flow data in Python. Results: pyInfinityFlow enables the efficient analysis of millions of cells, without down-sampling, through direct integration with well-established Python packages for single-cell genomics analysis. pyInfinityFlow accurately identifies both common and extremely rare cell populations which are challenging to define from single-cell genomics studies alone. We demonstrate that this workflow can nominate novel markers to design new flow cytometry gating strategies for predicted cell populations. pyInfinityFlow can be extended to diverse cell discovery analyses with flexibility to adapt to diverse Infinity Flow experimental designs.
引用
收藏
页数:4
相关论文
共 50 条
  • [21] Analysis of Clinical Flow Cytometric Immunophenotyping Data by Clustering on Statistical Manifolds: Treating Flow Cytometry Data as High-Dimensional Objects
    Finn, William G.
    Carter, Kevin M.
    Raich, Raviv
    Stoolman, Lloyd M.
    Hero, Alfred O.
    CYTOMETRY PART B-CLINICAL CYTOMETRY, 2009, 76B (01) : 1 - 7
  • [22] MetaGate: Interactive analysis of high-dimensional cytometry data with metadata integration
    Ask, Eivind Heggernes
    Tschan-Plessl, Astrid
    Hoel, Hanna Julie
    Kolstad, Arne
    Holte, Harald
    Malmberg, Karl-Johan
    PATTERNS, 2024, 5 (07):
  • [23] Automated high-dimensional flow cytometric data analysis
    Hu, Xinli
    Pyne, Saumyadipta
    Rossin, Elizabeth
    Tamayo, Pablo
    Hafler, David
    Mesirov, Jilt
    De Jager, Philip
    CLINICAL IMMUNOLOGY, 2008, 127 : S152 - S152
  • [24] Automated High-Dimensional Flow Cytometric Data Analysis
    Pyne, Saumyadipta
    Hu, Xinli
    Wang, Kui
    Rossin, Elizabeth
    Lin, Tsung-, I
    Maier, Lisa
    Baecher-Allan, Clare
    McLachlan, Geoffrey
    Tamayo, Pablo
    Hafler, David
    De Jager, Philip
    Mesirov, Jill
    RESEARCH IN COMPUTATIONAL MOLECULAR BIOLOGY, PROCEEDINGS, 2010, 6044 : 577 - 577
  • [25] Automated high-dimensional flow cytometric data analysis
    Pyne, Saumyadipta
    Hu, Xinli
    Wang, Kui
    Rossin, Elizabeth
    Lin, Tsung-I
    Maier, Lisa M.
    Baecher-Allan, Clare
    McLachlan, Geoffrey J.
    Tamayo, Pablo
    Hafler, David A.
    De Jager, Philip L.
    Mesirov, Jill P.
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2009, 106 (21) : 8519 - 8524
  • [26] Unveiling the power of high-dimensional cytometry data with cyCONDOR
    Kroeger, Charlotte
    Mueller, Sophie
    Leidner, Jacqueline
    Kroeber, Theresa
    Warnat-Herresthal, Stefanie
    Spintge, Jannis Bastian
    Zajac, Timo
    Neubauer, Anna
    Frolov, Aleksej
    Carraro, Caterina
    DELCODE Study Grp, Silka Dawn
    Jessen, Frank
    Puccio, Simone
    Aschenbrenner, Anna C.
    Schultze, Joachim L.
    Pecht, Tal
    Beyer, Marc D.
    Bonaguro, Lorenzo
    NATURE COMMUNICATIONS, 2024, 15 (01)
  • [27] Analyzing high-dimensional cytometry data using FlowSOM
    Quintelier, Katrien
    Couckuyt, Artuur
    Emmaneel, Annelies
    Aerts, Joachim
    Saeys, Yvan
    Van Gassen, Sofie
    NATURE PROTOCOLS, 2021, 16 (08) : 3775 - 3801
  • [28] Algorithmic Tools for Mining High-Dimensional Cytometry Data
    Chester, Cariad
    Maecker, Holden T.
    JOURNAL OF IMMUNOLOGY, 2015, 195 (03): : 773 - 779
  • [29] Analyzing high-dimensional cytometry data using FlowSOM
    Katrien Quintelier
    Artuur Couckuyt
    Annelies Emmaneel
    Joachim Aerts
    Yvan Saeys
    Sofie Van Gassen
    Nature Protocols, 2021, 16 : 3775 - 3801
  • [30] Unveiling the power of high-dimensional cytometry data with cyCONDOR
    Kroeger, Charlotte
    Mueller, Sophie
    Leidner, Jacqueline
    Kroeber, Theresa
    Warnat-Herresthal, Stefanie
    Spintge, Jannis B.
    Zajac, Timo
    Frolov, Aleksej
    Carraro, Caterina
    Puccio, Simone
    Schultze, Joachim L.
    Pacht, Tal
    Beyer, Marc
    Bonaguro, Lorenzo
    EUROPEAN JOURNAL OF IMMUNOLOGY, 2024, 54 : 185 - 185