pyInfinityFlow: optimized imputation and analysis of high-dimensional flow cytometry data for millions of cells

被引:1
|
作者
Ferchen, Kyle [1 ,2 ]
Salomonis, Nathan [3 ,4 ]
Grimes, H. Leighton [2 ,4 ,5 ]
机构
[1] Univ Cincinnati, Canc & Cellular Biol, Cincinnati, OH 45229 USA
[2] Cincinnati Childrens Hosp Med Ctr, Immunobiol, Cincinnati, OH 45229 USA
[3] Cincinnati Childrens Hosp Med Ctr, Biomed Informat, Cincinnati, OH 45229 USA
[4] Univ Cincinnati, Dept Pediat, Cincinnati, OH 45229 USA
[5] Cincinnati Childrens Hosp Med Ctr, Expt Hematol & Canc Biol, Cincinnati, OH 45229 USA
基金
美国国家卫生研究院;
关键词
D O I
10.1093/bioinformatics/btad287
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Motivation: While conventional flow cytometry is limited to dozens of markers, new experimental and computational strategies, such as Infinity Flow, allow for the generation and imputation of hundreds of cell surface protein markers in millions of cells. Here, we describe an end-to-end analysis workflow for Infinity Flow data in Python. Results: pyInfinityFlow enables the efficient analysis of millions of cells, without down-sampling, through direct integration with well-established Python packages for single-cell genomics analysis. pyInfinityFlow accurately identifies both common and extremely rare cell populations which are challenging to define from single-cell genomics studies alone. We demonstrate that this workflow can nominate novel markers to design new flow cytometry gating strategies for predicted cell populations. pyInfinityFlow can be extended to diverse cell discovery analyses with flexibility to adapt to diverse Infinity Flow experimental designs.
引用
收藏
页数:4
相关论文
共 50 条
  • [41] Comparison of Clustering Methods for High-Dimensional Single-Cell Flow and Mass Cytometry Data
    Weber, Lukas M.
    Robinson, Mark D.
    CYTOMETRY PART A, 2016, 89A (12) : 1084 - 1096
  • [42] Variable selection techniques after multiple imputation in high-dimensional data
    Faisal Maqbool Zahid
    Shahla Faisal
    Christian Heumann
    Statistical Methods & Applications, 2020, 29 : 553 - 580
  • [43] Multiple imputation for high-dimensional mixed incomplete continuous and binary data
    He, Ren
    Belin, Thomas
    STATISTICS IN MEDICINE, 2014, 33 (13) : 2251 - 2262
  • [44] Missing value imputation in high-dimensional phenomic data: imputable or not, and how?
    Serena G Liao
    Yan Lin
    Dongwan D Kang
    Divay Chandra
    Jessica Bon
    Naftali Kaminski
    Frank C Sciurba
    George C Tseng
    BMC Bioinformatics, 15
  • [45] High-dimensional missing data imputation via undirected graphical model
    Lee, Yoonah
    Park, Seongoh
    STATISTICS AND COMPUTING, 2024, 34 (05)
  • [46] Variable selection techniques after multiple imputation in high-dimensional data
    Zahid, Faisal Maqbool
    Faisal, Shahla
    Heumann, Christian
    STATISTICAL METHODS AND APPLICATIONS, 2020, 29 (03): : 553 - 580
  • [47] Missing value imputation in high-dimensional phenomic data: imputable or not, and how?
    Liao, Serena G.
    Lin, Yan
    Kang, Dongwan D.
    Chandra, Divay
    Bon, Jessica
    Kaminski, Naftali
    Sciurba, Frank C.
    Tseng, George C.
    BMC BIOINFORMATICS, 2014, 15
  • [48] High-Dimensional Analysis of Single-Cell Flow Cytometry Data Predicts Relapse in Childhood Acute Lymphoblastic Leukaemia
    Chulian, Salvador
    Martinez-Rubio, Alvaro
    Perez-Garcia, Victor M.
    Rosa, Maria
    Blazquez Goni, Cristina
    Rodriguez Gutierrez, Juan Francisco
    Hermosin-Ramos, Lourdes
    Molinos Quintana, Agueda
    Caballero-Velazquez, Teresa
    Ramirez-Orellana, Manuel
    Castillo Robleda, Ana
    Luis Fernandez-Martinez, Juan
    CANCERS, 2021, 13 (01) : 1 - 20
  • [49] Shared resource lab (SRL) strategies for supporting high-dimensional cytometry data analysis
    Gravano, David M.
    Rieger, Aja M.
    Nettenstrom, Lauren
    Hall, Christopher
    Ferrer-Font, Laura
    CYTOMETRY PART A, 2023, 103 (12) : 947 - 952
  • [50] Incomplete high-dimensional data imputation algorithm using feature selection and clustering analysis on cloud
    Bu, Fanyu
    Chen, Zhikui
    Zhang, Qingchen
    Yang, Laurence T.
    JOURNAL OF SUPERCOMPUTING, 2016, 72 (08): : 2977 - 2990