MetaGate: Interactive analysis of high-dimensional cytometry data with metadata integration

被引:0
|
作者
Ask, Eivind Heggernes [1 ,2 ]
Tschan-Plessl, Astrid [1 ,3 ]
Hoel, Hanna Julie [1 ]
Kolstad, Arne [4 ]
Holte, Harald [5 ,6 ]
Malmberg, Karl-Johan [1 ,2 ,7 ]
机构
[1] Oslo Univ Hosp, Inst Canc Res, Dept Canc Immunol, Oslo, Norway
[2] Univ Oslo, Precis Immunotherapy Alliance, Oslo, Norway
[3] Univ Hosp Basel, Div Hematol, Basel, Switzerland
[4] Innlandet Hosp Trust, Dept Oncol, Div Gjovik, Lillehammer, Norway
[5] Oslo Univ Hosp, Dept Oncol, Oslo, Norway
[6] Univ Oslo, Inst Clin Med, Fac Med, KG Jebsen Ctr B Cell Malignancies, Oslo, Norway
[7] Karolinska Inst, Ctr Infect Med, Dept Med Huddinge, Stockholm, Sweden
来源
PATTERNS | 2024年 / 5卷 / 07期
基金
瑞典研究理事会;
关键词
FLOW-CYTOMETRY; CELL; EXPANSION;
D O I
10.1016/j.patter.2024.100989
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Flow cytometry is a powerful technology for high-throughput protein quantification at the single-cell level. Technical advances have substantially increased data complexity, but novel bioinformatical tools often show limitations in statistical testing, data sharing, cross-experiment comparability, or clinical data integration. We developed MetaGate as a platform for interactive statistical analysis and visualization of manually gated high-dimensional cytometry data with integration of metadata. MetaGate provides a data reduction algorithm based on a combinatorial gating system that produces a small, portable, and standardized data file. This is subsequently used to produce figures and statistical analyses through a fast web-based user interface. We demonstrate the utility of MetaGate through a comprehensive mass cytometry analysis of peripheral blood immune cells from 28 patients with diffuse large B cell lymphoma along with 17 healthy controls. Through MetaGate analysis, our study identifies key immune cell population changes associated with disease
引用
收藏
页数:13
相关论文
共 50 条
  • [1] Integration, exploration, and analysis of high-dimensional single-cell cytometry data using Spectre
    Ashhurst, Thomas Myles
    Marsh-Wakefield, Felix
    Putri, Givanna Haryono
    Spiteri, Alanna Gabrielle
    Shinko, Diana
    Read, Mark Norman
    Smith, Adrian Lloyd
    King, Nicholas Jonathan Cole
    [J]. CYTOMETRY PART A, 2022, 101 (03) : 237 - 253
  • [2] Making the most of high-dimensional cytometry data
    Marsh-Wakefield, Felix M. D.
    Mitchell, Andrew J.
    Norton, Samuel E.
    Ashhurst, Thomas Myles
    Leman, Julia K. H.
    Roberts, Joanna M.
    Harte, Jessica E.
    McGuire, Helen M.
    Kemp, Roslyn A.
    [J]. IMMUNOLOGY AND CELL BIOLOGY, 2021, 99 (07): : 680 - 696
  • [3] CytoSPADE: high-performance analysis and visualization of high-dimensional cytometry data
    Linderman, Michael D.
    Bjornson, Zach
    Simonds, Erin F.
    Qiu, Peng
    Bruggner, Robert V.
    Sheode, Ketaki
    Meng, Teresa H.
    Plevritis, Sylvia K.
    Nolan, Garry P.
    [J]. BIOINFORMATICS, 2012, 28 (18) : 2400 - 2401
  • [4] Missing data in interactive high-dimensional data visualization
    Swayne, DF
    Buja, A
    [J]. COMPUTATIONAL STATISTICS, 1998, 13 (01) : 15 - 26
  • [5] Ensuring Full Spectrum Flow Cytometry Data Quality for High-Dimensional Data Analysis
    Ferrer-Font, Laura
    Kraker, Geoffrey
    Hally, Kathryn E.
    Price, Kylie M.
    [J]. CURRENT PROTOCOLS, 2023, 3 (02):
  • [6] Analyzing high-dimensional cytometry data using FlowSOM
    Quintelier, Katrien
    Couckuyt, Artuur
    Emmaneel, Annelies
    Aerts, Joachim
    Saeys, Yvan
    Van Gassen, Sofie
    [J]. NATURE PROTOCOLS, 2021, 16 (08) : 3775 - 3801
  • [7] Algorithmic Tools for Mining High-Dimensional Cytometry Data
    Chester, Cariad
    Maecker, Holden T.
    [J]. JOURNAL OF IMMUNOLOGY, 2015, 195 (03): : 773 - 779
  • [8] High-Dimensional Data Analysis Algorithms Yield Comparable Results for Mass Cytometry and Spectral Flow Cytometry Data
    Ferrer-Font, Laura
    Mayer, Johannes U.
    Old, Samuel
    Hermans, Ian F.
    Irish, Jonathan
    Price, Kylie M.
    [J]. CYTOMETRY PART A, 2020, 97 (08) : 824 - 831
  • [9] Analyzing high-dimensional cytometry data using FlowSOM
    Katrien Quintelier
    Artuur Couckuyt
    Annelies Emmaneel
    Joachim Aerts
    Yvan Saeys
    Sofie Van Gassen
    [J]. Nature Protocols, 2021, 16 : 3775 - 3801
  • [10] Representative Factor Generation for the Interactive Visual Analysis of High-Dimensional Data
    Turkay, Cagatay
    Lundervold, Arvid
    Lundervold, Astri Johansen
    Hauser, Helwig
    [J]. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, 2012, 18 (12) : 2621 - 2630