Single-cell gene regulatory network prediction by explainable AI

被引:15
|
作者
Keyl, Philipp [1 ,2 ,3 ]
Bischoff, Philip [1 ,2 ,3 ,4 ,5 ]
Dernbach, Gabriel [1 ,2 ,3 ,6 ]
Bockmayr, Michael [1 ,2 ,3 ,7 ,8 ]
Fritz, Rebecca [1 ,2 ,3 ]
Horst, David [1 ,2 ,3 ,5 ]
Bluethgen, Nils [1 ,2 ,3 ,9 ]
Montavon, Gregoire [6 ,10 ]
Mueller, Klaus-Robert [6 ,10 ,11 ,12 ]
Klauschen, Frederick [1 ,2 ,3 ,5 ,6 ,13 ,14 ]
机构
[1] Charite Univ Med Berlin, Inst Pathol, Charitepl 1, D-10117 Berlin, Germany
[2] Free Univ Berlin, Charitepl 1, D-10117 Berlin, Germany
[3] Humboldt Univ, Charitepl 1, D-10117 Berlin, Germany
[4] Charite Univ Med Berlin, Berlin Inst Hlth, Anna Louisa Karsch Str 2, D-10178 Berlin, Germany
[5] German Canc Res Ctr, German Canc Consortium DKTK, Berlin Partner Site, Berlin, Germany
[6] BIFOLD Berlin Inst Fdn Learning & Data, Berlin, Germany
[7] Univ Med Ctr Hamburg Eppendorf, Dept Pediat Hematol & Oncolog, Martinistr 52, D-20246 Hamburg, Germany
[8] Univ Med Ctr Hamburg Eppendorf, Mildred Scheel Canc Career Ctr HaTriCS4, Martinistr 52, D-20246 Hamburg, Germany
[9] Humboldt Univ, Free Univ Berlin, Inst Biol, Unter Linden 6, D-10099 Berlin, Germany
[10] Tech Univ Berlin, Machine Learning Grp, Marchstr 23, D-10587 Berlin, Germany
[11] Korea Univ, Dept Artificial Intelligence, Seoul 136713, South Korea
[12] Max Planck Inst Informat, Stuhlsatzenhausweg 4, D-66123 Saarbrucken, Germany
[13] Ludwig Maximilians Univ Munchen, Inst Pathol, Thalkirchner Str 36, D-80337 Munich, Germany
[14] German Canc Res Ctr, German Canc Consortium DKTK, Munich Partner Site, Munich, Germany
关键词
CANCER; HETEROGENEITY; EXPRESSION; MUTATIONS;
D O I
10.1093/nar/gkac1212
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The molecular heterogeneity of cancer cells contributes to the often partial response to targeted therapies and relapse of disease due to the escape of resistant cell populations. While single-cell sequencing has started to improve our understanding of this heterogeneity, it offers a mostly descriptive view on cellular types and states. To obtain more functional insights, we propose scGeneRAI, an explainable deep learning approach that uses layer-wise relevance propagation (LRP) to infer gene regulatory networks from static single-cell RNA sequencing data for individual cells. We benchmark our method with synthetic data and apply it to single-cell RNA sequencing data of a cohort of human lung cancers. From the predicted single-cell networks our approach reveals characteristic network patterns for tumor cells and normal epithelial cells and identifies subnetworks that are observed only in (subgroups of) tumor cells of certain patients. While current state-of-the-art methods are limited by their ability to only predict average networks for cell populations, our approach facilitates the reconstruction of networks down to the level of single cells which can be utilized to characterize the heterogeneity of gene regulation within and across tumors.
引用
收藏
页码:E20 / E20
页数:14
相关论文
共 50 条
  • [1] Gene regulatory network inference in single-cell biology
    Akers, Kyle
    Murali, T. M.
    CURRENT OPINION IN SYSTEMS BIOLOGY, 2021, 26 : 87 - 97
  • [2] Comprehensive gene regulatory network analysis based on explainable AI
    Park, Heewon
    Maruhashi, Koji
    Yamaguchi, Rui
    Imoto, Seiya
    Miyano, Satoru
    CANCER SCIENCE, 2022, 113 : 870 - 870
  • [3] Single-cell gene regulatory network analysis for mixed cell populations
    Junjie Tang
    Changhu Wang
    Feiyi Xiao
    Ruibin Xi
    Quantitative Biology, 2024, 12 (04) : 375 - 388
  • [4] Single-cell gene regulatory network analysis for mixed cell populations
    Tang, Junjie
    Wang, Changhu
    Xiao, Feiyi
    Xi, Ruibin
    QUANTITATIVE BIOLOGY, 2024,
  • [5] Single-cell transcriptomics unveils gene regulatory network plasticity
    Iacono, Giovanni
    Massoni-Badosa, Ramon
    Heyn, Holger
    GENOME BIOLOGY, 2019, 20 (1)
  • [6] Single-cell transcriptomics unveils gene regulatory network plasticity
    Giovanni Iacono
    Ramon Massoni-Badosa
    Holger Heyn
    Genome Biology, 20
  • [7] Fusion prior gene network for high reliable single-cell gene regulatory network inference
    Zhang, Yongqing
    He, Yuchen
    Chen, Qingyuan
    Yang, Yihan
    Gong, Meiqin
    COMPUTERS IN BIOLOGY AND MEDICINE, 2022, 143
  • [8] A scalable SCENIC workflow for single-cell gene regulatory network analysis
    van de Sande, Bram
    Flerin, Christopher
    Davie, Kristofer
    De Waegeneer, Maxime
    Hulselmans, Gert
    Aibar, Sara
    Seurinck, Ruth
    Saelens, Wouter
    Cannoodt, Robrecht
    Rouchon, Quentin
    Verbeiren, Toni
    De Maeyer, Dries
    Reumers, Joke
    Saeys, Yvan
    Aerts, Stein
    NATURE PROTOCOLS, 2020, 15 (07) : 2247 - 2276
  • [9] A scalable SCENIC workflow for single-cell gene regulatory network analysis
    Bram Van de Sande
    Christopher Flerin
    Kristofer Davie
    Maxime De Waegeneer
    Gert Hulselmans
    Sara Aibar
    Ruth Seurinck
    Wouter Saelens
    Robrecht Cannoodt
    Quentin Rouchon
    Toni Verbeiren
    Dries De Maeyer
    Joke Reumers
    Yvan Saeys
    Stein Aerts
    Nature Protocols, 2020, 15 : 2247 - 2276
  • [10] Evaluating the Reproducibility of Single-Cell Gene Regulatory Network Inference Algorithms
    Kang, Yoonjee
    Thieffry, Denis
    Cantini, Laura
    FRONTIERS IN GENETICS, 2021, 12