Single-cell gene regulatory network prediction by explainable AI

被引:15
|
作者
Keyl, Philipp [1 ,2 ,3 ]
Bischoff, Philip [1 ,2 ,3 ,4 ,5 ]
Dernbach, Gabriel [1 ,2 ,3 ,6 ]
Bockmayr, Michael [1 ,2 ,3 ,7 ,8 ]
Fritz, Rebecca [1 ,2 ,3 ]
Horst, David [1 ,2 ,3 ,5 ]
Bluethgen, Nils [1 ,2 ,3 ,9 ]
Montavon, Gregoire [6 ,10 ]
Mueller, Klaus-Robert [6 ,10 ,11 ,12 ]
Klauschen, Frederick [1 ,2 ,3 ,5 ,6 ,13 ,14 ]
机构
[1] Charite Univ Med Berlin, Inst Pathol, Charitepl 1, D-10117 Berlin, Germany
[2] Free Univ Berlin, Charitepl 1, D-10117 Berlin, Germany
[3] Humboldt Univ, Charitepl 1, D-10117 Berlin, Germany
[4] Charite Univ Med Berlin, Berlin Inst Hlth, Anna Louisa Karsch Str 2, D-10178 Berlin, Germany
[5] German Canc Res Ctr, German Canc Consortium DKTK, Berlin Partner Site, Berlin, Germany
[6] BIFOLD Berlin Inst Fdn Learning & Data, Berlin, Germany
[7] Univ Med Ctr Hamburg Eppendorf, Dept Pediat Hematol & Oncolog, Martinistr 52, D-20246 Hamburg, Germany
[8] Univ Med Ctr Hamburg Eppendorf, Mildred Scheel Canc Career Ctr HaTriCS4, Martinistr 52, D-20246 Hamburg, Germany
[9] Humboldt Univ, Free Univ Berlin, Inst Biol, Unter Linden 6, D-10099 Berlin, Germany
[10] Tech Univ Berlin, Machine Learning Grp, Marchstr 23, D-10587 Berlin, Germany
[11] Korea Univ, Dept Artificial Intelligence, Seoul 136713, South Korea
[12] Max Planck Inst Informat, Stuhlsatzenhausweg 4, D-66123 Saarbrucken, Germany
[13] Ludwig Maximilians Univ Munchen, Inst Pathol, Thalkirchner Str 36, D-80337 Munich, Germany
[14] German Canc Res Ctr, German Canc Consortium DKTK, Munich Partner Site, Munich, Germany
关键词
CANCER; HETEROGENEITY; EXPRESSION; MUTATIONS;
D O I
10.1093/nar/gkac1212
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The molecular heterogeneity of cancer cells contributes to the often partial response to targeted therapies and relapse of disease due to the escape of resistant cell populations. While single-cell sequencing has started to improve our understanding of this heterogeneity, it offers a mostly descriptive view on cellular types and states. To obtain more functional insights, we propose scGeneRAI, an explainable deep learning approach that uses layer-wise relevance propagation (LRP) to infer gene regulatory networks from static single-cell RNA sequencing data for individual cells. We benchmark our method with synthetic data and apply it to single-cell RNA sequencing data of a cohort of human lung cancers. From the predicted single-cell networks our approach reveals characteristic network patterns for tumor cells and normal epithelial cells and identifies subnetworks that are observed only in (subgroups of) tumor cells of certain patients. While current state-of-the-art methods are limited by their ability to only predict average networks for cell populations, our approach facilitates the reconstruction of networks down to the level of single cells which can be utilized to characterize the heterogeneity of gene regulation within and across tumors.
引用
收藏
页码:E20 / E20
页数:14
相关论文
共 50 条
  • [21] Dissecting and improving gene regulatory network inference using single-cell transcriptome data
    Xue, Lingfeng
    Wu, Yan
    Lin, Yihan
    GENOME RESEARCH, 2023, 33 (09) : 1609 - 1621
  • [22] Inferring gene regulatory network from single-cell transcriptomes with graph autoencoder model
    Wang, Jiacheng
    Chen, Yaojia
    Zou, Quan
    PLOS GENETICS, 2023, 19 (09):
  • [23] Analyzing the gene regulatory network in hepatitis B patients by single-cell ATAC sequencing
    Xu, Huixuan
    Yu, Haiyan
    Zheng, Fengping
    Zhang, Cantong
    Cai, Wanxia
    Zhang, Xinzhou
    Tang, Donge
    Dai, Yong
    CLINICAL RHEUMATOLOGY, 2022, 41 (11) : 3513 - 3524
  • [24] Analyzing the gene regulatory network in hepatitis B patients by single-cell ATAC sequencing
    Huixuan Xu
    Haiyan Yu
    Fengping Zheng
    Cantong Zhang
    Wanxia Cai
    Xinzhou Zhang
    Donge Tang
    Yong Dai
    Clinical Rheumatology, 2022, 41 : 3513 - 3524
  • [25] Inferring single-cell gene regulatory network by non-redundant mutual information
    Zeng, Yanping
    He, Yongxin
    Zheng, Ruiqing
    Li, Min
    BRIEFINGS IN BIOINFORMATICS, 2023, 24 (05)
  • [26] Benchmarking algorithms for gene regulatory network inference from single-cell transcriptomic data
    Pratapa, Aditya
    Jalihal, Amogh P.
    Law, Jeffrey N.
    Bharadwaj, Aditya
    Murali, T. M.
    NATURE METHODS, 2020, 17 (02) : 147 - +
  • [27] Dictys: dynamic gene regulatory network dissects developmental continuum with single-cell multiomics
    Wang, Lingfei
    Trasanidis, Nikolaos
    Wu, Ting
    Dong, Guanlan
    Hu, Michael
    Bauer, Daniel E. E.
    Pinello, Luca
    NATURE METHODS, 2023, 20 (09) : 1368 - +
  • [28] SCENIC: single-cell regulatory network inference and clustering
    Aibar, Sara
    Gonzalez-Blas, Carmen Bravo
    Moerman, Thomas
    Van Anh Huynh-Thu
    Imrichova, Hana
    Hulselmans, Gert
    Rambow, Florian
    Marine, Jean-Christophe
    Geurts, Pierre
    Aerts, Jan
    van den Oord, Joost
    Atak, Zeynep Kalender
    Wouters, Jasper
    Aerts, Stein
    NATURE METHODS, 2017, 14 (11) : 1083 - +
  • [29] SCENIC: single-cell regulatory network inference and clustering
    Sara Aibar
    Carmen Bravo González-Blas
    Thomas Moerman
    Vân Anh Huynh-Thu
    Hana Imrichova
    Gert Hulselmans
    Florian Rambow
    Jean-Christophe Marine
    Pierre Geurts
    Jan Aerts
    Joost van den Oord
    Zeynep Kalender Atak
    Jasper Wouters
    Stein Aerts
    Nature Methods, 2017, 14 : 1083 - 1086
  • [30] Boosting single-cell gene regulatory network reconstruction via bulk-cell transcriptomic data
    Shu, Hantao
    Ding, Fan
    Zhou, Jingtian
    Xue, Yexiang
    Zhao, Dan
    Zeng, Jianyang
    Ma, Jianzhu
    BRIEFINGS IN BIOINFORMATICS, 2022, 23 (05)