Single-cell gene regulatory network prediction by explainable AI

被引:15
|
作者
Keyl, Philipp [1 ,2 ,3 ]
Bischoff, Philip [1 ,2 ,3 ,4 ,5 ]
Dernbach, Gabriel [1 ,2 ,3 ,6 ]
Bockmayr, Michael [1 ,2 ,3 ,7 ,8 ]
Fritz, Rebecca [1 ,2 ,3 ]
Horst, David [1 ,2 ,3 ,5 ]
Bluethgen, Nils [1 ,2 ,3 ,9 ]
Montavon, Gregoire [6 ,10 ]
Mueller, Klaus-Robert [6 ,10 ,11 ,12 ]
Klauschen, Frederick [1 ,2 ,3 ,5 ,6 ,13 ,14 ]
机构
[1] Charite Univ Med Berlin, Inst Pathol, Charitepl 1, D-10117 Berlin, Germany
[2] Free Univ Berlin, Charitepl 1, D-10117 Berlin, Germany
[3] Humboldt Univ, Charitepl 1, D-10117 Berlin, Germany
[4] Charite Univ Med Berlin, Berlin Inst Hlth, Anna Louisa Karsch Str 2, D-10178 Berlin, Germany
[5] German Canc Res Ctr, German Canc Consortium DKTK, Berlin Partner Site, Berlin, Germany
[6] BIFOLD Berlin Inst Fdn Learning & Data, Berlin, Germany
[7] Univ Med Ctr Hamburg Eppendorf, Dept Pediat Hematol & Oncolog, Martinistr 52, D-20246 Hamburg, Germany
[8] Univ Med Ctr Hamburg Eppendorf, Mildred Scheel Canc Career Ctr HaTriCS4, Martinistr 52, D-20246 Hamburg, Germany
[9] Humboldt Univ, Free Univ Berlin, Inst Biol, Unter Linden 6, D-10099 Berlin, Germany
[10] Tech Univ Berlin, Machine Learning Grp, Marchstr 23, D-10587 Berlin, Germany
[11] Korea Univ, Dept Artificial Intelligence, Seoul 136713, South Korea
[12] Max Planck Inst Informat, Stuhlsatzenhausweg 4, D-66123 Saarbrucken, Germany
[13] Ludwig Maximilians Univ Munchen, Inst Pathol, Thalkirchner Str 36, D-80337 Munich, Germany
[14] German Canc Res Ctr, German Canc Consortium DKTK, Munich Partner Site, Munich, Germany
关键词
CANCER; HETEROGENEITY; EXPRESSION; MUTATIONS;
D O I
10.1093/nar/gkac1212
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The molecular heterogeneity of cancer cells contributes to the often partial response to targeted therapies and relapse of disease due to the escape of resistant cell populations. While single-cell sequencing has started to improve our understanding of this heterogeneity, it offers a mostly descriptive view on cellular types and states. To obtain more functional insights, we propose scGeneRAI, an explainable deep learning approach that uses layer-wise relevance propagation (LRP) to infer gene regulatory networks from static single-cell RNA sequencing data for individual cells. We benchmark our method with synthetic data and apply it to single-cell RNA sequencing data of a cohort of human lung cancers. From the predicted single-cell networks our approach reveals characteristic network patterns for tumor cells and normal epithelial cells and identifies subnetworks that are observed only in (subgroups of) tumor cells of certain patients. While current state-of-the-art methods are limited by their ability to only predict average networks for cell populations, our approach facilitates the reconstruction of networks down to the level of single cells which can be utilized to characterize the heterogeneity of gene regulation within and across tumors.
引用
收藏
页码:E20 / E20
页数:14
相关论文
共 50 条
  • [31] Single-Cell RNA Sequencing Analysis of Gene Regulatory Network Changes in the Development of Lung Adenocarcinoma
    Yu, Dongshuo
    Zhang, Siwen
    Liu, Zhenhao
    Xu, Linfeng
    Chen, Lanming
    Xie, Lu
    BIOMOLECULES, 2023, 13 (04)
  • [32] Gene regulatory network reconstruction: harnessing the power of single-cell multi-omic data
    Kim, Daniel
    Tran, Andy
    Kim, Hani Jieun
    Lin, Yingxin
    Yang, Jean Yee Hwa
    Yang, Pengyi
    NPJ SYSTEMS BIOLOGY AND APPLICATIONS, 2023, 9 (01)
  • [33] Gene regulatory network reconstruction: harnessing the power of single-cell multi-omic data
    Daniel Kim
    Andy Tran
    Hani Jieun Kim
    Yingxin Lin
    Jean Yee Hwa Yang
    Pengyi Yang
    npj Systems Biology and Applications, 9
  • [34] High-performance single-cell gene regulatory network inference at scale: the Inferelator 3.0
    Gibbs, Claudia Skok
    Jackson, Christopher A.
    Saldi, Giuseppe-Antonio
    Tjarnberg, Andreas
    Shah, Aashna
    Watters, Aaron
    De Veaux, Nicholas
    Tchourine, Konstantine
    Yi, Ren
    Hamamsy, Tymor
    Castro, Dayanne M.
    Carriero, Nicholas
    Gorissen, Bram L.
    Gresham, David
    Miraldi, Emily R.
    Bonneau, Richard
    BIOINFORMATICS, 2022, 38 (09) : 2519 - 2528
  • [35] Gene-regulatory network analysis of ankylosing spondylitis with a single-cell chromatin accessible assay
    Yu, Haiyan
    Wu, Hongwei
    Zheng, Fengping
    Zhu, Chengxin
    Yin, Lianghong
    Dai, Weier
    Liu, Dongzhou
    Tang, Donge
    Hong, Xiaoping
    Dai, Yong
    SCIENTIFIC REPORTS, 2020, 10 (01)
  • [36] Decoding the regulatory network of early blood development from single-cell gene expression measurements
    Victoria Moignard
    Steven Woodhouse
    Laleh Haghverdi
    Andrew J Lilly
    Yosuke Tanaka
    Adam C Wilkinson
    Florian Buettner
    Iain C Macaulay
    Wajid Jawaid
    Evangelia Diamanti
    Shin-Ichi Nishikawa
    Nir Piterman
    Valerie Kouskoff
    Fabian J Theis
    Jasmin Fisher
    Berthold Göttgens
    Nature Biotechnology, 2015, 33 : 269 - 276
  • [37] Gene Regulatory Network Inference from Single-Cell Data Using Multivariate Information Measures
    Chan, Thalia E.
    Stumpf, Michael P. H.
    Babtie, Ann C.
    CELL SYSTEMS, 2017, 5 (03) : 251 - +
  • [38] Decoding the regulatory network of early blood development from single-cell gene expression measurements
    Moignard, Victoria
    Woodhouse, Steven
    Haghverdi, Laleh
    Lilly, Andrew J.
    Tanaka, Yosuke
    Wilkinson, Adam C.
    Buettner, Florian
    Macaulay, Iain C.
    Jawaid, Wajid
    Diamanti, Evangelia
    Nishikawa, Shin-Ichi
    Piterman, Nir
    Kouskoff, Valerie
    Theis, Fabian J.
    Fisher, Jasmin
    Goettgens, Berthold
    NATURE BIOTECHNOLOGY, 2015, 33 (03) : 269 - +
  • [39] Gene-regulatory network analysis of ankylosing spondylitis with a single-cell chromatin accessible assay
    Haiyan Yu
    Hongwei Wu
    Fengping Zheng
    Chengxin Zhu
    Lianghong Yin
    Weier Dai
    Dongzhou Liu
    Donge Tang
    Xiaoping Hong
    Yong Dai
    Scientific Reports, 10
  • [40] LogBTF: gene regulatory network inference using Boolean threshold network model from single-cell gene expression data
    Li, Lingyu
    Sun, Liangjie
    Chen, Guangyi
    Wong, Chi-Wing
    Ching, Wai-Ki
    Liu, Zhi-Ping
    BIOINFORMATICS, 2023, 39 (05)