Fusion prior gene network for high reliable single-cell gene regulatory network inference

被引:1
|
作者
Zhang, Yongqing [1 ,2 ]
He, Yuchen [1 ]
Chen, Qingyuan [1 ]
Yang, Yihan [3 ]
Gong, Meiqin [4 ]
机构
[1] Chengdu Univ Informat Technol, Sch Comp Sci, Chengdu 610225, Peoples R China
[2] Univ Elect Sci & Technol China, Sch Comp Sci & Engn, Chengdu 610054, Peoples R China
[3] Chongqing Univ Posts & Telecommun, Int Coll, Chongqing 400065, Peoples R China
[4] Sichuan Univ, West China Univ Hosp 2, Chengdu 610041, Peoples R China
基金
中国国家自然科学基金;
关键词
Gene regulatory network; Random forest; Markov random field; Single-cell sequence;
D O I
10.1016/j.compbiomed.2022.105279
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Single-Cell RNA sequencing technology provides an opportunity to discover gene regulatory networks(GRN) that control cell differentiation and drive cell type transformation. However, it is faced with the challenge of high loss and high noise of sequencing data and contains many pseudo-connections. To solve these problems, we propose a framework called Fusion prior gene network for Gene Regulatory Network inference Accuracy Enhancement (FGRNAE) to infer a high reliable gene regulatory network. Specifically, based on the Single-Cell RNA sequencing Network Propagation and network Fusion(scNPF) preprocessing framework, we employ the Random Walk with Restart on the prior gene network to interpolate the missing data. Furthermore, we infer the network using the Random Forest algorithm with the results achieved above. In addition, we apply data from the Co Function Network to build a meta-gene network and select the regulatory connection with the Markov Random Field. Extensive experiments based on datasets from BEELINE validate the effectiveness of our framework for improving the accuracy of inference.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Gene regulatory network inference in single-cell biology
    Akers, Kyle
    Murali, T. M.
    CURRENT OPINION IN SYSTEMS BIOLOGY, 2021, 26 : 87 - 97
  • [2] Evaluating the Reproducibility of Single-Cell Gene Regulatory Network Inference Algorithms
    Kang, Yoonjee
    Thieffry, Denis
    Cantini, Laura
    FRONTIERS IN GENETICS, 2021, 12
  • [3] High-performance single-cell gene regulatory network inference at scale: the Inferelator 3.0
    Gibbs, Claudia Skok
    Jackson, Christopher A.
    Saldi, Giuseppe-Antonio
    Tjarnberg, Andreas
    Shah, Aashna
    Watters, Aaron
    De Veaux, Nicholas
    Tchourine, Konstantine
    Yi, Ren
    Hamamsy, Tymor
    Castro, Dayanne M.
    Carriero, Nicholas
    Gorissen, Bram L.
    Gresham, David
    Miraldi, Emily R.
    Bonneau, Richard
    BIOINFORMATICS, 2022, 38 (09) : 2519 - 2528
  • [4] Integration of single-cell multi-omics for gene regulatory network inference
    Hu, Xinlin
    Hu, Yaohua
    Wu, Fanjie
    Leung, Ricky Wai Tak
    Qin, Jing
    COMPUTATIONAL AND STRUCTURAL BIOTECHNOLOGY JOURNAL, 2020, 18 : 1925 - 1938
  • [5] Gene regulatory network inference in the era of single-cell multi-omics
    Badia-i-Mompel, Pau
    Wessels, Lorna
    Mueller-Dott, Sophia
    Trimbour, Remi
    Flores, Ricardo Ramirez O.
    Argelaguet, Ricard
    Saez-Rodriguez, Julio
    NATURE REVIEWS GENETICS, 2023, 24 (11) : 739 - 754
  • [6] Gene regulatory network inference in the era of single-cell multi-omics
    Pau Badia-i-Mompel
    Lorna Wessels
    Sophia Müller-Dott
    Rémi Trimbour
    Ricardo O. Ramirez Flores
    Ricard Argelaguet
    Julio Saez-Rodriguez
    Nature Reviews Genetics, 2023, 24 : 739 - 754
  • [7] HGATLink: single-cell gene regulatory network inference via the fusion of heterogeneous graph attention networks and transformer
    Yao Sun
    Jing Gao
    BMC Bioinformatics, 26 (1)
  • [8] scSGL: kernelized signed graph learning for single-cell gene regulatory network inference
    Karaaslanli, Abdullah
    Saha, Satabdi
    Aviyente, Selin
    Maiti, Tapabrata
    BIOINFORMATICS, 2022, 38 (11) : 3011 - 3019
  • [9] Benchmarking algorithms for gene regulatory network inference from single-cell transcriptomic data
    Aditya Pratapa
    Amogh P. Jalihal
    Jeffrey N. Law
    Aditya Bharadwaj
    T. M. Murali
    Nature Methods, 2020, 17 : 147 - 154
  • [10] Dissecting and improving gene regulatory network inference using single-cell transcriptome data
    Xue, Lingfeng
    Wu, Yan
    Lin, Yihan
    GENOME RESEARCH, 2023, 33 (09) : 1609 - 1621