Fusion prior gene network for high reliable single-cell gene regulatory network inference

被引:1
|
作者
Zhang, Yongqing [1 ,2 ]
He, Yuchen [1 ]
Chen, Qingyuan [1 ]
Yang, Yihan [3 ]
Gong, Meiqin [4 ]
机构
[1] Chengdu Univ Informat Technol, Sch Comp Sci, Chengdu 610225, Peoples R China
[2] Univ Elect Sci & Technol China, Sch Comp Sci & Engn, Chengdu 610054, Peoples R China
[3] Chongqing Univ Posts & Telecommun, Int Coll, Chongqing 400065, Peoples R China
[4] Sichuan Univ, West China Univ Hosp 2, Chengdu 610041, Peoples R China
基金
中国国家自然科学基金;
关键词
Gene regulatory network; Random forest; Markov random field; Single-cell sequence;
D O I
10.1016/j.compbiomed.2022.105279
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Single-Cell RNA sequencing technology provides an opportunity to discover gene regulatory networks(GRN) that control cell differentiation and drive cell type transformation. However, it is faced with the challenge of high loss and high noise of sequencing data and contains many pseudo-connections. To solve these problems, we propose a framework called Fusion prior gene network for Gene Regulatory Network inference Accuracy Enhancement (FGRNAE) to infer a high reliable gene regulatory network. Specifically, based on the Single-Cell RNA sequencing Network Propagation and network Fusion(scNPF) preprocessing framework, we employ the Random Walk with Restart on the prior gene network to interpolate the missing data. Furthermore, we infer the network using the Random Forest algorithm with the results achieved above. In addition, we apply data from the Co Function Network to build a meta-gene network and select the regulatory connection with the Markov Random Field. Extensive experiments based on datasets from BEELINE validate the effectiveness of our framework for improving the accuracy of inference.
引用
收藏
页数:9
相关论文
共 50 条
  • [21] SCENIC: single-cell regulatory network inference and clustering
    Sara Aibar
    Carmen Bravo González-Blas
    Thomas Moerman
    Vân Anh Huynh-Thu
    Hana Imrichova
    Gert Hulselmans
    Florian Rambow
    Jean-Christophe Marine
    Pierre Geurts
    Jan Aerts
    Joost van den Oord
    Zeynep Kalender Atak
    Jasper Wouters
    Stein Aerts
    Nature Methods, 2017, 14 : 1083 - 1086
  • [22] SCENIC: single-cell regulatory network inference and clustering
    Aibar, Sara
    Gonzalez-Blas, Carmen Bravo
    Moerman, Thomas
    Van Anh Huynh-Thu
    Imrichova, Hana
    Hulselmans, Gert
    Rambow, Florian
    Marine, Jean-Christophe
    Geurts, Pierre
    Aerts, Jan
    van den Oord, Joost
    Atak, Zeynep Kalender
    Wouters, Jasper
    Aerts, Stein
    NATURE METHODS, 2017, 14 (11) : 1083 - +
  • [23] scMEGA: single-cell multi-omic enhancer-based gene regulatory network inference
    Li, Zhijian
    Nagai, James S.
    Kuppe, Christoph
    Kramann, Rafael
    Costa, Ivan G.
    BIOINFORMATICS ADVANCES, 2023, 3 (01):
  • [24] A single-cell multimodal view on gene regulatory network inference from transcriptomics and chromatin accessibility data
    Loers, Jens Uwe
    Vermeirssen, Vanessa
    BRIEFINGS IN BIOINFORMATICS, 2024, 25 (05)
  • [25] MetaSEM: Gene Regulatory Network Inference from Single-Cell RNA Data by Meta-Learning
    Zhang, Yongqing
    Wang, Maocheng
    Wang, Zixuan
    Liu, Yuhang
    Xiong, Shuwen
    Zou, Quan
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2023, 24 (03)
  • [26] IntroGRN: Gene Regulatory Network Inference from Single-Cell RNA Data Based on Introspective VAE
    Li, Rongyuan
    Wu, Jingli
    Li, Gaoshi
    Liu, Jiafei
    Liu, Jinlu
    Xuan, Junbo
    Deng, Zheng
    BIOINFORMATICS RESEARCH AND APPLICATIONS, PT I, ISBRA 2024, 2024, 14954 : 427 - 438
  • [27] A hybrid deep learning framework for gene regulatory network inference from single-cell transcriptomic data
    Zhao, Mengyuan
    He, Wenying
    Tang, Jijun
    Zou, Quan
    Guo, Fei
    BRIEFINGS IN BIOINFORMATICS, 2022, 23 (02)
  • [28] Inferring gene regulatory network from single-cell transcriptomic data by integrating multiple prior networks
    Gan, Yanglan
    Xin, Yongchang
    Hu, Xin
    Zou, Guobing
    COMPUTATIONAL BIOLOGY AND CHEMISTRY, 2021, 93 (93)
  • [29] A scalable SCENIC workflow for single-cell gene regulatory network analysis
    van de Sande, Bram
    Flerin, Christopher
    Davie, Kristofer
    De Waegeneer, Maxime
    Hulselmans, Gert
    Aibar, Sara
    Seurinck, Ruth
    Saelens, Wouter
    Cannoodt, Robrecht
    Rouchon, Quentin
    Verbeiren, Toni
    De Maeyer, Dries
    Reumers, Joke
    Saeys, Yvan
    Aerts, Stein
    NATURE PROTOCOLS, 2020, 15 (07) : 2247 - 2276
  • [30] A scalable SCENIC workflow for single-cell gene regulatory network analysis
    Bram Van de Sande
    Christopher Flerin
    Kristofer Davie
    Maxime De Waegeneer
    Gert Hulselmans
    Sara Aibar
    Ruth Seurinck
    Wouter Saelens
    Robrecht Cannoodt
    Quentin Rouchon
    Toni Verbeiren
    Dries De Maeyer
    Joke Reumers
    Yvan Saeys
    Stein Aerts
    Nature Protocols, 2020, 15 : 2247 - 2276