Front Profile in Time Backward for the Bistable Reaction-Diffusion Equation on Metric Graphs

被引:0
|
作者
Morita, Yoshihisa [1 ]
机构
[1] Ryukoku Univ, Joint Res Ctr Sci & Technol, Yokotani 1-5, Seta 5202194, Japan
关键词
Reaction-diffusion equation; Bistable nonlinearity; Entire solution; Traveling wave front;
D O I
10.1007/s10884-023-10275-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In the bistable reaction-diffusion equation on a half-line there exists an entire solution exhibiting the front propagation from the infinity of the line. We glue an arbitrary number of half-lines at a single point (junction) to build a metric graph and examine the front propagation on given half-lines (upstream branches). The aim of the article is to show the existence of an entire solution which converges to the profile of the traveling wave with an arbitrarily assigned phase-shift in each upstream branch as t -> -infinity. The proof is carried out by constructing an appropriate pair of sub-and super-solutions.
引用
收藏
页码:55 / 69
页数:15
相关论文
共 50 条
  • [41] A geometric approach to bistable front propagation in scalar reaction-diffusion equations with cut-off
    Dumortier, Freddy
    Popovic, Nikola
    Kaper, Tasso J.
    PHYSICA D-NONLINEAR PHENOMENA, 2010, 239 (20-22) : 1984 - 1999
  • [42] Some inverse stability results for the bistable reaction-diffusion equation using Carleman inequalities
    Boulakia, Muriel
    Grandmont, Celine
    Osses, Axel
    COMPTES RENDUS MATHEMATIQUE, 2009, 347 (11-12) : 619 - 622
  • [43] Global boundedness and the Allee effect in a nonlocal bistable reaction-diffusion equation in population dynamics
    Cheng, Chen
    Chen, Li
    Li, Jing
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2021, 60
  • [44] Shift in the speed of reaction-diffusion equation with a cut-off: Pushed and bistable fronts
    Benguria, R. D.
    Depassier, M. C.
    PHYSICA D-NONLINEAR PHENOMENA, 2014, 280 : 38 - 43
  • [45] Stability of a nonlocal delayed reaction-diffusion equation with a non-monotone bistable nonlinearity
    Hu, Wenjie
    Zhou, Yinggao
    APPLIED MATHEMATICS LETTERS, 2018, 79 : 20 - 26
  • [46] ON REACTION-DIFFUSION EQUATION WITH ABSORPTION
    王立文
    陈庆益
    ActaMathematicaScientia, 1993, (02) : 147 - 152
  • [47] Fractional reaction-diffusion equation
    Seki, K
    Wojcik, M
    Tachiya, M
    JOURNAL OF CHEMICAL PHYSICS, 2003, 119 (04): : 2165 - 2170
  • [48] ON REACTION-DIFFUSION EQUATION WITH ABSORPTION
    WANG, LW
    CHEN, QY
    ACTA MATHEMATICA SCIENTIA, 1993, 13 (02) : 147 - 152
  • [49] A reaction-diffusion equation with memory
    Grasselli, M
    Pata, V
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2006, 15 (04) : 1079 - 1088
  • [50] On a fractional reaction-diffusion equation
    de Andrade, Bruno
    Viana, Arlucio
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2017, 68 (03):