Some inverse stability results for the bistable reaction-diffusion equation using Carleman inequalities

被引:7
|
作者
Boulakia, Muriel [1 ]
Grandmont, Celine [2 ]
Osses, Axel [3 ,4 ]
机构
[1] Univ Paris 06, UMR 7598, Lab Jacques Louis Lions, F-75005 Paris, France
[2] Inst Natl Rech Informat & Automat, Projet REO, F-78153 Le Chesnay, France
[3] Univ Chile, Dept Ingn Matemat, Santiago, Chile
[4] Univ Chile, Ctr Modelamiento Matemat, CNRS, UMI 2807, Santiago, Chile
关键词
D O I
10.1016/j.crma.2009.03.022
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider the bistable equation nu(t) - Delta nu = f (nu, x), f(nu,x) = a (x)nu(1 - nu) (nu - alpha(x)) with homogeneous Neumann boundary conditions in a bounded domain Omega subset of R(3) with regular boundary. For this equation, we prove Lipschitz stability for the inverse problem of recovering parameters a and a from measurements of nu in (0, T) x omega, where omega is an arbitrary nonempty open subset of Omega and measurements of nu(t(0)) in the whole domain Omega at some positive time t(0) such that 0 < t(0) < T. The result is based in some suitable global Carleman estimate for the nonlinear problem. To cite this article: M. Boulakia et al., C. R. Acad. Sci. Paris, Ser. I 347 (2009). (C) 2009 Academie des sciences. Published by Elsevier Masson SAS. All rights reserved.
引用
收藏
页码:619 / 622
页数:4
相关论文
共 50 条