Guaranteed Lower Eigenvalue Bounds for Steklov Operators Using Conforming Finite Element Methods

被引:3
|
作者
Nakano, Taiga [2 ]
Li, Qin [3 ]
Yue, Meiling [3 ]
Liu, Xuefeng [1 ]
机构
[1] Niigata Univ, Fac Sci, 8050 Ikarashi 2 Cho,Nishi Ku, Niigata, Niigata 9502181, Japan
[2] Niigata Univ, Grad Sch Sci & Technol, 8050 Ikarashi 2 Cho,Nishi Ku, Niigata, Niigata 9502181, Japan
[3] Beijing Technol & Business Univ, Sch Math & Stat, Beijing 100048, Peoples R China
基金
中国国家自然科学基金; 日本学术振兴会;
关键词
Steklov Eigenvalue Problems; Non-Homogeneous Neumann Problems; Finite Element Methods; Hypercircle; Guaranteed Lower Eigenvalue Bounds; A-POSTERIORI BOUNDS; LAPLACE EIGENVALUES; APPROXIMATIONS; EIGENVECTORS;
D O I
10.1515/cmam-2022-0218
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
For the eigenvalue problem of the Steklov differential operator, an algorithm based on the conforming finite element method (FEM) is proposed to provide guaranteed lower bounds for the eigenvalues. The proposed lower eigenvalue bounds utilize the a priori error estimation for FEM solutions to non-homogeneous Neumann boundary value problems, which is obtained by constructing the hypercircle for the corresponding FEM spaces and boundary conditions. Numerical examples demonstrate the efficiency of our proposed method.
引用
收藏
页码:487 / 502
页数:16
相关论文
共 50 条
  • [21] Nonconforming finite element approximations of the Steklov eigenvalue problem
    Yang, Yidu
    Li, Qin
    Li, Sirui
    APPLIED NUMERICAL MATHEMATICS, 2009, 59 (10) : 2388 - 2401
  • [22] Guaranteed Lower Bounds for the Elastic Eigenvalues by Using the Nonconforming Crouzeix-Raviart Finite Element
    Zhang, Xuqing
    Zhang, Yu
    Yang, Yidu
    MATHEMATICS, 2020, 8 (08)
  • [23] A SKELETAL FINITE ELEMENT METHOD CAN COMPUTE LOWER EIGENVALUE BOUNDS
    Carstensen, Carsten
    Zhai, Qilong
    Zhang, Ran
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2020, 58 (01) : 109 - 124
  • [24] Guaranteed Lower Bounds for Eigenvalues of Elliptic Operators
    Hu, Jun
    Huang, Yunqing
    Ma, Rui
    JOURNAL OF SCIENTIFIC COMPUTING, 2016, 67 (03) : 1181 - 1197
  • [25] Simulation of a nonlinear Steklov eigenvalue problem using finite-element approximation
    Kumar P.
    Kumar M.
    Computational Mathematics and Modeling, 2010, 21 (1) : 109 - 116
  • [26] Guaranteed Lower Bounds for Eigenvalues of Elliptic Operators
    Jun Hu
    Yunqing Huang
    Rui Ma
    Journal of Scientific Computing, 2016, 67 : 1181 - 1197
  • [27] Constructing both lower and upper bounds for the eigenvalues of elliptic operators by nonconforming finite element methods
    Jun Hu
    Yunqing Huang
    Quan Shen
    Numerische Mathematik, 2015, 131 : 273 - 302
  • [28] Constructing both lower and upper bounds for the eigenvalues of elliptic operators by nonconforming finite element methods
    Hu, Jun
    Huang, Yunqing
    Shen, Quan
    NUMERISCHE MATHEMATIK, 2015, 131 (02) : 273 - 302
  • [29] Asymptotic Lower Bounds for Eigenvalues of the Steklov Eigenvalue Problem with Variable Coefficients
    Zhang, Yu
    Bi, Hai
    Yang, Yidu
    APPLICATIONS OF MATHEMATICS, 2021, 66 (01) : 1 - 19
  • [30] Asymptotic Lower Bounds for Eigenvalues of the Steklov Eigenvalue Problem with Variable Coefficients
    Yu Zhang
    Hai Bi
    Yidu Yang
    Applications of Mathematics, 2021, 66 : 1 - 19