Asymptotic Lower Bounds for Eigenvalues of the Steklov Eigenvalue Problem with Variable Coefficients

被引:1
|
作者
Zhang, Yu [1 ,2 ]
Bi, Hai [1 ]
Yang, Yidu [1 ]
机构
[1] Guizhou Normal Univ, Sch Math Sci, 116 Baoshan Rd N, Guiyang 550001, Peoples R China
[2] Guizhou Univ Finance & Econ, Sch Math & Stat, Huayan Rd, Guiyang 550025, Peoples R China
基金
中国国家自然科学基金;
关键词
correction; Steklov eigenvalue problem; Crouzeix-Raviart finite element; asymptotic lower bounds; convergence order; FINITE-ELEMENT APPROXIMATIONS; CROUZEIX-RAVIART; EQUATIONS; OPERATORS; POINCARE;
D O I
10.21136/AM.2020.0108-19
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, using a new correction to the Crouzeix-Raviart finite element eigenvalue approximations, we obtain asymptotic lower bounds of eigenvalues for the Steklov eigenvalue problem with variable coefficients on d-dimensional domains (d= 2, 3). In addition, we prove that the corrected eigenvalues converge to the exact ones from below. The new result removes the conditions of eigenfunction being singular and eigenvalue being large enough, which are usually required in the existing arguments about asymptotic lower bounds. Further, we prove that the corrected eigenvalues still maintain the same convergence order as uncorrected eigenvalues. Finally, numerical experiments validate our theoretical results.
引用
收藏
页码:1 / 19
页数:19
相关论文
共 50 条