Guaranteed Lower Eigenvalue Bounds for Steklov Operators Using Conforming Finite Element Methods

被引:3
|
作者
Nakano, Taiga [2 ]
Li, Qin [3 ]
Yue, Meiling [3 ]
Liu, Xuefeng [1 ]
机构
[1] Niigata Univ, Fac Sci, 8050 Ikarashi 2 Cho,Nishi Ku, Niigata, Niigata 9502181, Japan
[2] Niigata Univ, Grad Sch Sci & Technol, 8050 Ikarashi 2 Cho,Nishi Ku, Niigata, Niigata 9502181, Japan
[3] Beijing Technol & Business Univ, Sch Math & Stat, Beijing 100048, Peoples R China
基金
中国国家自然科学基金; 日本学术振兴会;
关键词
Steklov Eigenvalue Problems; Non-Homogeneous Neumann Problems; Finite Element Methods; Hypercircle; Guaranteed Lower Eigenvalue Bounds; A-POSTERIORI BOUNDS; LAPLACE EIGENVALUES; APPROXIMATIONS; EIGENVECTORS;
D O I
10.1515/cmam-2022-0218
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
For the eigenvalue problem of the Steklov differential operator, an algorithm based on the conforming finite element method (FEM) is proposed to provide guaranteed lower bounds for the eigenvalues. The proposed lower eigenvalue bounds utilize the a priori error estimation for FEM solutions to non-homogeneous Neumann boundary value problems, which is obtained by constructing the hypercircle for the corresponding FEM spaces and boundary conditions. Numerical examples demonstrate the efficiency of our proposed method.
引用
收藏
页码:487 / 502
页数:16
相关论文
共 50 条
  • [41] Lower bounds of eigenvalues of the biharmonic operators by the rectangular Morley element methods
    Hu, Jun
    Yang, Xueqin
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2015, 31 (05) : 1623 - 1644
  • [42] Local a priori/a posteriori error estimates of conforming finite elements approximation for Steklov eigenvalue problems
    YiDu Yang
    Hai Bi
    Science China Mathematics, 2014, 57 : 1319 - 1329
  • [43] The adaptive finite element method for the Steklov eigenvalue problem in inverse scattering
    Zhang, Yu
    Bi, Hai
    Yang, Yidu
    OPEN MATHEMATICS, 2020, 18 : 216 - 236
  • [44] ANALYSIS OF MIXED METHODS USING CONFORMING AND NONCONFORMING FINITE-ELEMENT METHODS
    CHEN, ZX
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 1993, 27 (01): : 9 - 34
  • [45] Guaranteed lower bounds of the smallest eigenvalues of elliptic differential operators
    Kuznetsov, Yu. A.
    Repin, S. I.
    JOURNAL OF NUMERICAL MATHEMATICS, 2013, 21 (02) : 135 - 156
  • [46] An improved two-grid finite element method for the Steklov eigenvalue problem
    Weng, Zhifeng
    Zhai, Shuying
    Feng, Xinlong
    APPLIED MATHEMATICAL MODELLING, 2015, 39 (10-11) : 2962 - 2972
  • [47] A Weak Galerkin Finite Element Method Can Compute Both Upper and Lower Eigenvalue Bounds
    Qigang Liang
    Xuejun Xu
    Liuyao Yuan
    Journal of Scientific Computing, 2022, 93
  • [48] Explicit lower bounds for Stokes eigenvalue problems by using nonconforming finite elements
    Xie, Manting
    Xie, Hehu
    Liu, Xuefeng
    JAPAN JOURNAL OF INDUSTRIAL AND APPLIED MATHEMATICS, 2018, 35 (01) : 335 - 354
  • [49] A Weak Galerkin Finite Element Method Can Compute Both Upper and Lower Eigenvalue Bounds
    Liang, Qigang
    Xu, Xuejun
    Yuan, Liuyao
    JOURNAL OF SCIENTIFIC COMPUTING, 2022, 93 (01)
  • [50] A MULTILEVEL CORRECTION TYPE OF ADAPTIVE FINITE ELEMENT METHOD FOR STEKLOV EIGENVALUE PROBLEMS
    Lin, Qun
    Xie, Hehu
    APPLICATIONS OF MATHEMATICS 2012, 2012, : 134 - 143