Quantum computation of thermal averages for a non-Abelian D4 lattice gauge theory via quantum Metropolis sampling

被引:0
|
作者
Ballini, Edoardo [1 ,2 ,3 ]
Clemente, Giuseppe [4 ,5 ,6 ]
D 'Elia, Massimo [6 ]
Maio, Lorenzo [5 ,6 ,7 ]
Zambello, Kevin [5 ,6 ]
机构
[1] Univ Trento, Pitaevskii BEC Ctr, Via Sommar 14, I-38123 Trento, Italy
[2] Univ Trento, Dept Phys, Via Sommar 14, I-38123 Trento, Italy
[3] Trento Inst Fundamental Phys & Applicat TIFPA, INFN, Via Sommar 14, I-38123 Trento, Italy
[4] Deutsch Elektronen Synchrotron DESY, Platanenallee 6, D-15738 Zeuthen, Germany
[5] Univ Pisa, Dipartimento Fis, Largo Pontecorvo 3, I-56127 Pisa, Italy
[6] Sez Pisa, INFN, Largo Pontecorvo 3, I-56127 Pisa, Italy
[7] Aix Marseille Univ, Univ Toulon, CNRS, CPT,UMR 7332, F-13288 Marseille, France
基金
欧洲研究理事会;
关键词
CONFINEMENT; KERNEL;
D O I
10.1103/PhysRevD.109.034510
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
In this paper, we show the application of the quantum Metropolis sampling (QMS) algorithm to a toy gauge theory with discrete non-Abelian gauge group D4 in (2 + 1)-dimensions, discussing in general how some components of hybrid quantum-classical algorithms should be adapted in the case of gauge theories. In particular, we discuss the construction of random unitary operators which preserve gauge invariance and act transitively on the physical Hilbert space, constituting an ergodic set of quantum Metropolis moves between gauge invariant eigenspaces, and introduce a protocol for gauge invariant measurements. Furthermore, we show how a finite resolution in the energy measurements distorts the energy and plaquette distribution measured via QMS, and propose a heuristic model that takes into account part of the deviations between numerical results and exact analytical results, whose discrepancy tends to vanish by increasing the number of qubits used for the energy measurements.
引用
收藏
页数:20
相关论文
共 50 条
  • [41] NON-ABELIAN GAUGE-THEORY ON A FINITE-ELEMENT LATTICE
    MILTON, KA
    GROSE, T
    PHYSICAL REVIEW D, 1990, 41 (04): : 1261 - 1268
  • [42] Quantum K-theory of flag varieties via non-abelian localization
    Yan, Xiaohan (xiaohanyan@imj-prg.fr), 2021, arXiv
  • [43] Topological Quantum Field Theory on non-Abelian gerbes
    Kalkkinen, Jussi
    JOURNAL OF GEOMETRY AND PHYSICS, 2007, 57 (02) : 505 - 530
  • [44] SU(2) non-Abelian gauge field theory in one dimension on digital quantum computers
    Klco, Natalie
    Savage, Martin J.
    Stryker, Jesse R.
    PHYSICAL REVIEW D, 2020, 101 (07)
  • [45] Vacuum-Induced Abelian and Non-Abelian Gauge Potentials in Cavity Quantum Electrodynamics
    张海龙
    梁奇锋
    俞立先
    陈刚
    Communications in Theoretical Physics, 2011, 56 (12) : 1084 - 1088
  • [46] CLASSICAL AND QUANTUM-MECHANICS OF NON-ABELIAN GAUGE-FIELDS
    SAVVIDY, GK
    NUCLEAR PHYSICS B, 1984, 246 (02) : 302 - 334
  • [47] Vacuum-Induced Abelian and Non-Abelian Gauge Potentials in Cavity Quantum Electrodynamics
    Zhang Hai-Long
    Liang Qi-Feng
    Yu Li-Xian
    Chen Gang
    COMMUNICATIONS IN THEORETICAL PHYSICS, 2011, 56 (06) : 1084 - 1088
  • [48] Quantum properties of a non-Abelian gauge invariant action with a mass parameter
    Capri, M. A. L.
    Dudal, D.
    Gracey, J. A.
    Lemes, V. E. R.
    Sobreiro, R. F.
    Sorella, S. P.
    Verschelde, H.
    PHYSICAL REVIEW D, 2006, 74 (04):
  • [49] Majorana anyons, non-Abelian statistics and quantum computation in Chern-Simons-Higgs theory
    Marino, E. C.
    Brozeguini, J. C.
    JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2014,
  • [50] Universal quantum computation in the surface code using non-Abelian islands
    Laubscher, Katharina
    Loss, Daniel
    Wootton, James R.
    PHYSICAL REVIEW A, 2019, 100 (01)