Quantum K-theory of flag varieties via non-abelian localization

被引:0
|
作者
机构
[1] Yan, Xiaohan
来源
关键词
Abelian/non-abelian correspondence - Fixed points - Flag variety - Generating functions - Gromov-witten invariant - J-functions - K-Theory - Localisation - Recursive methods - Weyl group;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
相关论文
共 50 条
  • [1] Quantum k-theory of grassmannians and non-abelian localization
    Givental, Alexander
    Yan, Xiaohan
    arXiv, 2020,
  • [2] Quantum K-Theory of Grassmannians and Non-Abelian Localization
    Givental, Alexander
    Yan, Xiaohan
    SYMMETRY INTEGRABILITY AND GEOMETRY-METHODS AND APPLICATIONS, 2021, 17
  • [3] Euler characteristics in the quantum K-theory of flag varieties
    Anders S. Buch
    Sjuvon Chung
    Changzheng Li
    Leonardo C. Mihalcea
    Selecta Mathematica, 2020, 26
  • [4] Euler characteristics in the quantum K-theory of flag varieties
    Buch, Anders S.
    Chung, Sjuvon
    Li, Changzheng
    Mihalcea, Leonardo C.
    SELECTA MATHEMATICA-NEW SERIES, 2020, 26 (02):
  • [5] Non-Abelian K-Theory for chevalley groups over rings
    Stepanov A.V.
    Journal of Mathematical Sciences, 2015, 209 (4) : 645 - 656
  • [6] SEMI-INFINITE SCHUBERT VARIETIES AND QUANTUM K-THEORY OF FLAG MANIFOLDS
    Braverman, Alexander
    Finkelberg, Michael
    JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 2014, 27 (04) : 1147 - 1168
  • [7] K-theory of twisted differential operators on flag varieties
    Holland, MP
    Polo, P
    INVENTIONES MATHEMATICAE, 1996, 123 (02) : 377 - 414
  • [8] THE GAMMA FILTRATIONS OF K-THEORY OF COMPLETE FLAG VARIETIES
    Yagita, Nobuaki
    KODAI MATHEMATICAL JOURNAL, 2019, 42 (01) : 130 - 159
  • [9] A non-Abelian K-theory and pseudo-isotopies of 3-manifolds
    Kiralis, J
    K-THEORY, 1996, 10 (02): : 135 - 174
  • [10] Quantum K-theory of incidence varieties
    Xu, Weihong
    EUROPEAN JOURNAL OF MATHEMATICS, 2024, 10 (02)