Quantum computation of thermal averages for a non-Abelian D4 lattice gauge theory via quantum Metropolis sampling

被引:0
|
作者
Ballini, Edoardo [1 ,2 ,3 ]
Clemente, Giuseppe [4 ,5 ,6 ]
D 'Elia, Massimo [6 ]
Maio, Lorenzo [5 ,6 ,7 ]
Zambello, Kevin [5 ,6 ]
机构
[1] Univ Trento, Pitaevskii BEC Ctr, Via Sommar 14, I-38123 Trento, Italy
[2] Univ Trento, Dept Phys, Via Sommar 14, I-38123 Trento, Italy
[3] Trento Inst Fundamental Phys & Applicat TIFPA, INFN, Via Sommar 14, I-38123 Trento, Italy
[4] Deutsch Elektronen Synchrotron DESY, Platanenallee 6, D-15738 Zeuthen, Germany
[5] Univ Pisa, Dipartimento Fis, Largo Pontecorvo 3, I-56127 Pisa, Italy
[6] Sez Pisa, INFN, Largo Pontecorvo 3, I-56127 Pisa, Italy
[7] Aix Marseille Univ, Univ Toulon, CNRS, CPT,UMR 7332, F-13288 Marseille, France
基金
欧洲研究理事会;
关键词
CONFINEMENT; KERNEL;
D O I
10.1103/PhysRevD.109.034510
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
In this paper, we show the application of the quantum Metropolis sampling (QMS) algorithm to a toy gauge theory with discrete non-Abelian gauge group D4 in (2 + 1)-dimensions, discussing in general how some components of hybrid quantum-classical algorithms should be adapted in the case of gauge theories. In particular, we discuss the construction of random unitary operators which preserve gauge invariance and act transitively on the physical Hilbert space, constituting an ergodic set of quantum Metropolis moves between gauge invariant eigenspaces, and introduce a protocol for gauge invariant measurements. Furthermore, we show how a finite resolution in the energy measurements distorts the energy and plaquette distribution measured via QMS, and propose a heuristic model that takes into account part of the deviations between numerical results and exact analytical results, whose discrepancy tends to vanish by increasing the number of qubits used for the energy measurements.
引用
收藏
页数:20
相关论文
共 50 条