Distribution constraining for combating mode collapse in generative adversarial networks

被引:1
|
作者
Gong, Yanxiang [1 ]
Zhong, Minjiang [1 ]
Ji, Yang [1 ]
Xie, Mei [1 ]
Ma, Xin [2 ]
机构
[1] Univ Elect Sci & Technol China, Sch Informat & Commun Engn, Chengdu, Peoples R China
[2] Univ Elect Sci & Technol China, Sch Life Sci & Technol, Chengdu, Peoples R China
关键词
mode collapse; image synthesis; generative adversarial networks; distribution constraining; IMAGE SYNTHESIS;
D O I
10.1117/1.JEI.32.4.043029
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Image synthesis is a critical technique in the image processing field. Recently, generative adversarial networks (GANs) have played a significant role in synthesis tasks. However, the issue of mode collapse remains a major challenge in GANs, which limits their potential applications. We propose a method to address the mode collapse problem. Our approach focuses on minimizing the divergence between the distributions of real and generated features, thereby reducing the learning pressure on the discriminator. An advantage of our method is that it does not require prior knowledge or manual design. Additionally, it can be easily incorporated into state-of-the-art frameworks across various domains. Experimental results demonstrate the effectiveness and competitive performance of our proposed method. (c) 2023 SPIE and IS&T
引用
收藏
页数:13
相关论文
共 50 条
  • [31] Triangle Generative Adversarial Networks
    Gan, Zhe
    Chen, Liqun
    Wang, Weiyao
    Pu, Yunchen
    Zhang, Yizhe
    Liu, Hao
    Li, Chunyuan
    Carin, Lawrence
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 30 (NIPS 2017), 2017, 30
  • [32] Evolutionary Generative Adversarial Networks
    Wang, Chaoyue
    Xu, Chang
    Yao, Xin
    Tao, Dacheng
    IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2019, 23 (06) : 921 - 934
  • [33] A Review on Generative Adversarial Networks
    Yuan, Yiqin
    Guo, Yuhao
    2020 5TH INTERNATIONAL CONFERENCE ON INFORMATION SCIENCE, COMPUTER TECHNOLOGY AND TRANSPORTATION (ISCTT 2020), 2020, : 392 - 401
  • [34] Modular Generative Adversarial Networks
    Zhao, Bo
    Chang, Bo
    Jie, Zequn
    Sigal, Leonid
    COMPUTER VISION - ECCV 2018, PT XIV, 2018, 11218 : 157 - 173
  • [35] Constrained Generative Adversarial Networks
    Chao, Xiaopeng
    Cao, Jiangzhong
    Lu, Yuqin
    Dai, Qingyun
    Liang, Shangsong
    IEEE ACCESS, 2021, 9 : 19208 - 19218
  • [36] Structured Generative Adversarial Networks
    Deng, Zhijie
    Zhang, Hao
    Liang, Xiaodan
    Yang, Luona
    Xu, Shizhen
    Zhu, Jun
    Xing, Eric P.
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 30 (NIPS 2017), 2017, 30
  • [37] Quantum generative adversarial networks
    Dallaire-Demers, Pierre-Luc
    Killoran, Nathan
    PHYSICAL REVIEW A, 2018, 98 (01)
  • [38] Generative Adversarial Networks in Cardiology
    Skandarani, Youssef
    Lalande, Alain
    Afilalo, Jonathan
    Jodoin, Pierre-Marc
    CANADIAN JOURNAL OF CARDIOLOGY, 2022, 38 (02) : 196 - 203
  • [39] A Review: Generative Adversarial Networks
    Gonog, Liang
    Zhou, Yimin
    PROCEEDINGS OF THE 2019 14TH IEEE CONFERENCE ON INDUSTRIAL ELECTRONICS AND APPLICATIONS (ICIEA 2019), 2019, : 505 - 510
  • [40] Optoelectronic generative adversarial networks
    Jumin Qiu
    Ganqing Lu
    Tingting Liu
    Dejian Zhang
    Shuyuan Xiao
    Tianbao Yu
    Communications Physics, 8 (1)