Distribution constraining for combating mode collapse in generative adversarial networks

被引:1
|
作者
Gong, Yanxiang [1 ]
Zhong, Minjiang [1 ]
Ji, Yang [1 ]
Xie, Mei [1 ]
Ma, Xin [2 ]
机构
[1] Univ Elect Sci & Technol China, Sch Informat & Commun Engn, Chengdu, Peoples R China
[2] Univ Elect Sci & Technol China, Sch Life Sci & Technol, Chengdu, Peoples R China
关键词
mode collapse; image synthesis; generative adversarial networks; distribution constraining; IMAGE SYNTHESIS;
D O I
10.1117/1.JEI.32.4.043029
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Image synthesis is a critical technique in the image processing field. Recently, generative adversarial networks (GANs) have played a significant role in synthesis tasks. However, the issue of mode collapse remains a major challenge in GANs, which limits their potential applications. We propose a method to address the mode collapse problem. Our approach focuses on minimizing the divergence between the distributions of real and generated features, thereby reducing the learning pressure on the discriminator. An advantage of our method is that it does not require prior knowledge or manual design. Additionally, it can be easily incorporated into state-of-the-art frameworks across various domains. Experimental results demonstrate the effectiveness and competitive performance of our proposed method. (c) 2023 SPIE and IS&T
引用
收藏
页数:13
相关论文
共 50 条
  • [41] A Review on Generative Adversarial Networks
    De Silva, Dilum Maduranga
    Poravi, Guhanathan
    2021 6TH INTERNATIONAL CONFERENCE FOR CONVERGENCE IN TECHNOLOGY (I2CT), 2021,
  • [42] Slimmable Generative Adversarial Networks
    Hou, Liang
    Yuan, Zehuan
    Huang, Lei
    Shen, Huawei
    Cheng, Xueqi
    Wang, Changhu
    THIRTY-FIFTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, THIRTY-THIRD CONFERENCE ON INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE AND THE ELEVENTH SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2021, 35 : 7746 - 7753
  • [43] Generative Adversarial Networks Quantization
    Mitrofanov, E.
    Grishkin, V.
    PHYSICS OF PARTICLES AND NUCLEI, 2024, 55 (03) : 563 - 565
  • [44] Coupled Generative Adversarial Networks
    Liu, Ming-Yu
    Tuzel, Oncel
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 29 (NIPS 2016), 2016, 29
  • [45] Generative Adversarial Networks An overview
    Creswell, Antonia
    White, Tom
    Dumoulin, Vincent
    Arulkumaran, Kai
    Sengupta, Biswa
    Bharath, Anil A.
    IEEE SIGNAL PROCESSING MAGAZINE, 2018, 35 (01) : 53 - 65
  • [46] Deconstructing Generative Adversarial Networks
    Zhu, Banghua
    Jiao, Jiantao
    Tse, David
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2020, 66 (11) : 7155 - 7179
  • [47] Generative Adversarial Networks for Classification
    Israel, Steven A.
    Goldstein, J. H.
    Klein, Jeffrey S.
    Talamonti, James
    Tanner, Franklin
    Zabel, Shane
    Sallee, Philip A.
    McCoy, Lisa
    2017 IEEE APPLIED IMAGERY PATTERN RECOGNITION WORKSHOP (AIPR), 2017,
  • [48] Leveraging Generative Models for Combating Adversarial Attacks on Tabular Datasets
    Zhou, Jiahui
    Zaidi, Nayyar
    Zhang, Yishuo
    Montague, Paul
    Kim, Junae
    Li, Gang
    ADVANCES IN KNOWLEDGE DISCOVERY AND DATA MINING, PAKDD 2023, PT I, 2023, 13935 : 147 - 158
  • [49] Label Distribution Learning with Data Augmentation using Generative Adversarial Networks
    Rong, Bin-Yuan
    Zhang, Heng-Ru
    Li, Gui-Lin
    Min, Fan
    2022 IEEE 9TH INTERNATIONAL CONFERENCE ON DATA SCIENCE AND ADVANCED ANALYTICS (DSAA), 2022, : 21 - 30
  • [50] Spectral regularization for combating mode collapse in GANs
    Liu, Kanglin
    Qiu, Guoping
    Tang, Wenming
    Zhou, Fei
    IMAGE AND VISION COMPUTING, 2020, 104