Quantifying the effect of gate errors on variational quantum eigensolvers for quantum chemistry

被引:8
|
作者
Dalton, Kieran [1 ,2 ,3 ]
Long, Christopher K. [1 ,2 ]
Yordanov, Yordan S. [1 ,2 ]
Smith, Charles G. [1 ,2 ]
Barnes, Crispin H. W. [2 ]
Mertig, Normann [1 ]
Arvidsson-Shukur, David R. M. [1 ]
机构
[1] Hitachi Cambridge Lab, JJ Thomson Ave, Cambridge CB3 0HE, England
[2] Univ Cambridge, Dept Phys, Cavendish Lab, Cambridge CB3 0HE, England
[3] Swiss Fed Inst Technol, Dept Phys, CH-8093 Zurich, Switzerland
关键词
EXCHANGE; CODE;
D O I
10.1038/s41534-024-00808-x
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Variational quantum eigen solvers (VQEs) are leading candidates to demonstrate near-term quantum advantage. Here, we conductdensity-matrix simulations of leading gate-based VQEs for a range of molecules. We numerically quantify their level of tolerable depolarizing gate-errors. Wefind that: (i) The best-performing VQEs require gate-error probabilities between 10(-6)and 10(-4)(10(-4)and 10(-2)with error mitigation) to predict, within chemical accuracy, ground-state energies of small molecules with 4-14 orbitals.(ii) ADAPT-VQEs that construct ansatz circuits iteratively out perform fixed-circuit VQEs. (iii) ADAPT-VQEs perform better with circuits constructed from gate-efficient rather than physically-motivated elements. (iv) The maximally-allowed gate-error probability, p(c), for any VQE to achieve chemical accuracy decreases with the number N-II of noisy two-qubit gates as p(c)alpha N-II(-1). Additionally, p(c) decreases with system size, even with error mitigation, implying that larger molecules require even lower gate-errors. Thus, quantum advantage via gate-based VQEs is unlikely unless gate-error probabilities are decreased by orders of magnitude.
引用
收藏
页数:11
相关论文
共 50 条
  • [21] Expanding variational quantum eigensolvers to larger systems by dividing the calculations between classical and quantum hardware
    Stenger, John P. T.
    Gunlycke, Daniel
    Hellberg, C. Stephen
    PHYSICAL REVIEW A, 2022, 105 (02)
  • [22] Simulating gauge theories with variational quantum eigensolvers in superconducting microwave cavities
    Zhang, Jinglei
    Ferguson, Ryan
    Kuehn, Stefan
    Haase, Jan F.
    Wilson, C. M.
    Jansen, Karl
    Muschik, Christine A.
    QUANTUM, 2023, 7
  • [23] Calculating nonadiabatic couplings and Berry's phase by variational quantum eigensolvers
    Tamiya, Shiro
    Koh, Sho
    Nakagawa, Yuya O.
    PHYSICAL REVIEW RESEARCH, 2021, 3 (02):
  • [24] Avoiding local minima in variational quantum eigensolvers with the natural gradient optimizer
    Wierichs, David
    Gogolin, Christian
    Kastoryano, Michael
    PHYSICAL REVIEW RESEARCH, 2020, 2 (04):
  • [25] The Effect of Noise on the Performance of Variational Algorithms for Quantum Chemistry
    Saib, Waheeda
    Wallden, Petros
    Akhalwaya, Ismail
    2021 IEEE INTERNATIONAL CONFERENCE ON QUANTUM COMPUTING AND ENGINEERING (QCE 2021) / QUANTUM WEEK 2021, 2021, : 42 - 53
  • [26] Quantifying quantum chemistry.
    Dunning, TH
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2002, 223 : U500 - U500
  • [27] Benchmarking variational quantum eigensolvers for the square-octagon-lattice Kitaev model
    Li, Andy C. Y.
    Alam, M. Sohaib
    Iadecola, Thomas
    Jahin, Ammar
    Job, Joshua
    Kurkcuoglu, Doga Murat
    Li, Richard
    Orth, Peter P.
    Ozguler, A. Baris
    Perdue, Gabriel N.
    Tubman, Norm M.
    PHYSICAL REVIEW RESEARCH, 2023, 5 (03):
  • [28] Finding the ground state of the Hubbard model by variational methods on a quantum computer with gate errors
    Reiner, Jan-Michael
    Wilhelm-Mauch, Frank
    Schoen, Gerd
    Marthaler, Michael
    QUANTUM SCIENCE AND TECHNOLOGY, 2019, 4 (03):
  • [29] New Algorithms for Iterative Matrix-Free Eigensolvers in Quantum Chemistry
    Zuev, Dmitry
    Vecharynski, Eugene
    Yang, Chao
    Orms, Natalie
    Krylov, Anna I.
    JOURNAL OF COMPUTATIONAL CHEMISTRY, 2015, 36 (05) : 273 - 284
  • [30] Optimization of the variational quantum eigensolver for quantum chemistry applications
    de Keijzer, R. J. P. T.
    Colussi, V. E.
    Skoric, B.
    Kokkelmans, S. J. J. M. F.
    AVS QUANTUM SCIENCE, 2022, 4 (01):