Quantifying the effect of gate errors on variational quantum eigensolvers for quantum chemistry

被引:8
|
作者
Dalton, Kieran [1 ,2 ,3 ]
Long, Christopher K. [1 ,2 ]
Yordanov, Yordan S. [1 ,2 ]
Smith, Charles G. [1 ,2 ]
Barnes, Crispin H. W. [2 ]
Mertig, Normann [1 ]
Arvidsson-Shukur, David R. M. [1 ]
机构
[1] Hitachi Cambridge Lab, JJ Thomson Ave, Cambridge CB3 0HE, England
[2] Univ Cambridge, Dept Phys, Cavendish Lab, Cambridge CB3 0HE, England
[3] Swiss Fed Inst Technol, Dept Phys, CH-8093 Zurich, Switzerland
关键词
EXCHANGE; CODE;
D O I
10.1038/s41534-024-00808-x
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Variational quantum eigen solvers (VQEs) are leading candidates to demonstrate near-term quantum advantage. Here, we conductdensity-matrix simulations of leading gate-based VQEs for a range of molecules. We numerically quantify their level of tolerable depolarizing gate-errors. Wefind that: (i) The best-performing VQEs require gate-error probabilities between 10(-6)and 10(-4)(10(-4)and 10(-2)with error mitigation) to predict, within chemical accuracy, ground-state energies of small molecules with 4-14 orbitals.(ii) ADAPT-VQEs that construct ansatz circuits iteratively out perform fixed-circuit VQEs. (iii) ADAPT-VQEs perform better with circuits constructed from gate-efficient rather than physically-motivated elements. (iv) The maximally-allowed gate-error probability, p(c), for any VQE to achieve chemical accuracy decreases with the number N-II of noisy two-qubit gates as p(c)alpha N-II(-1). Additionally, p(c) decreases with system size, even with error mitigation, implying that larger molecules require even lower gate-errors. Thus, quantum advantage via gate-based VQEs is unlikely unless gate-error probabilities are decreased by orders of magnitude.
引用
收藏
页数:11
相关论文
共 50 条
  • [31] Improving the Accuracy of Variational Quantum Eigensolvers with Fewer Qubits Using Orbital Optimization
    Bierman, Joel
    Li, Yingzhou
    Lu, Jianfeng
    JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2023, : 790 - 798
  • [32] Error mitigation in variational quantum eigensolvers using tailored probabilistic machine learning
    Jiang, Tao
    Rogers, John
    Frank, Marius S.
    Christiansen, Ove
    Yao, Yong-Xin
    Lanata, Nicola
    PHYSICAL REVIEW RESEARCH, 2024, 6 (03):
  • [33] Variational Quantum Chemistry Programs in JaqalPaq
    Maupin, Oliver G.
    Baczewski, Andrew D.
    Love, Peter J.
    Landahl, Andrew J.
    ENTROPY, 2021, 23 (06)
  • [34] The Cost of Improving the Precision of the Variational Quantum Eigensolver for Quantum Chemistry
    Mihalikova, Ivana
    Pivoluska, Matej
    Plesch, Martin
    Friak, Martin
    Nagaj, Daniel
    Sob, Mojmir
    NANOMATERIALS, 2022, 12 (02)
  • [35] Quantifying the Sensitivity to Errors in Analog Quantum Simulation
    Poggi, Pablo M.
    Lysne, Nathan K.
    Kuper, Kevin W.
    Deutsch, Ivan H.
    Jessen, Poul S.
    PRX QUANTUM, 2020, 1 (02):
  • [36] Variational quantum gate optimization at the pulse level
    Greenaway, Sean
    Petiziol, Francesco
    Zhao, Hongzheng
    Mintert, Florian
    SCIPOST PHYSICS, 2024, 16 (03):
  • [37] Classical postprocessing for the unitary block-optimization scheme to reduce the effect of noise on the optimization of variational quantum eigensolvers
    Ding, Xiaochuan
    Clark, Bryan K.
    Physical Review A, 2024, 110 (06)
  • [38] Comparative study of adaptive variational quantum eigensolvers for multi-orbital impurity models
    Mukherjee, Anirban
    Berthusen, Noah F.
    Getelina, Joao C.
    Orth, Peter P.
    Yao, Yong-Xin
    COMMUNICATIONS PHYSICS, 2023, 6 (01)
  • [39] Comparative study of adaptive variational quantum eigensolvers for multi-orbital impurity models
    Anirban Mukherjee
    Noah F. Berthusen
    João C. Getelina
    Peter P. Orth
    Yong-Xin Yao
    Communications Physics, 6
  • [40] Open source variational quantum eigensolver extension of the quantum learning machine for quantum chemistry
    Haidar, Mohammad
    Rancic, Marko J. J.
    Ayral, Thomas
    Maday, Yvon
    Piquemal, Jean-Philip
    WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL MOLECULAR SCIENCE, 2023, 13 (05)