Simulating gauge theories with variational quantum eigensolvers in superconducting microwave cavities

被引:0
|
作者
Zhang, Jinglei [1 ,2 ]
Ferguson, Ryan [1 ,2 ]
Kuehn, Stefan [3 ]
Haase, Jan F. [1 ,2 ,4 ]
Wilson, C. M. [1 ,5 ]
Jansen, Karl [6 ]
Muschik, Christine A. [1 ,2 ,7 ]
机构
[1] Univ Waterloo, Inst Quantum Comp, Waterloo, ON N2L 3G1, Canada
[2] Univ Waterloo, Dept Phys & Astron, Waterloo, ON N2L 3G1, Canada
[3] Cyprus Inst, Computat Based Sci & Technol Res Ctr, 20 Kavafi St, CY-2121 Nicosia, Cyprus
[4] Univ Ulm, Inst Theoret Phys & IQST, Albert Einstein Allee 11, D-89069 Ulm, Germany
[5] Univ Waterloo, Dept Elect & Comp Engn, Waterloo, ON N2L 3G1, Canada
[6] DESY Zeuthen, NIC, Platanenallee 6, D-15738 Zeuthen, Germany
[7] Perimeter Inst Theoret Phys, Waterloo, ON N2L 2Y5, Canada
来源
QUANTUM | 2023年 / 7卷
基金
加拿大自然科学与工程研究理事会;
关键词
MASSIVE SCHWINGER MODEL; MATRIX PRODUCT STATES; RENORMALIZATION-GROUP;
D O I
暂无
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Quantum-enhanced computing methods are promising candidates to solve currently intractable problems. We consider here a variational quantum eigensolver (VQE), that delegates costly state preparations and measurements to quantum hardware, while classical optimization techniques guide the quantum hardware to create a desired target state. In this work, we propose a bosonic VQE using superconducting microwave cavities, overcoming the typical restriction of a small Hilbert space when the VQE is qubit based. The considered platform allows for strong nonlinearities between photon modes, which are highly customisable and can be tuned in situ, i.e. during running experiments. Our proposal hence allows for the realization of a wide range of bosonic ansatz states, and is therefore especially useful when simulating models involving degrees of freedom that cannot be simply mapped to qubits, such as gauge theories, that include components which require infinite-dimensional Hilbert spaces. We thus propose to experimentally apply this bosonic VQE to the U(1) Higgs model including a topological term, which in general introduces a sign problem in the model, making it intractable with conventional Monte Carlo methods.
引用
收藏
页数:25
相关论文
共 50 条
  • [1] Noise-Aware Variational Eigensolvers: A Dissipative Route for Lattice Gauge Theories
    Cobos, Jesus
    Locher, David F.
    Bermudez, Alejandro
    Mueller, Markus
    Rico, Enrique
    PRX QUANTUM, 2024, 5 (03):
  • [2] Simulating lattice gauge theories on a quantum computer
    Byrnes, T
    Yamamoto, Y
    PHYSICAL REVIEW A, 2006, 73 (02):
  • [3] Variational quantum eigensolvers by variance minimization
    Zhang, Dan-Bo
    Chen, Bin-Lin
    Yuan, Zhan-Hao
    Yin, Tao
    CHINESE PHYSICS B, 2022, 31 (12)
  • [4] Benchmarking Adaptive Variational Quantum Eigensolvers
    Claudino, Daniel
    Wright, Jerimiah
    McCaskey, Alexander J.
    Humble, Travis S.
    FRONTIERS IN CHEMISTRY, 2020, 8
  • [5] Variational quantum eigensolvers by variance minimization
    张旦波
    陈彬琳
    原展豪
    殷涛
    Chinese Physics B, 2022, 31 (12) : 41 - 48
  • [6] Collective optimization for variational quantum eigensolvers
    Zhang, Dan-Bo
    Yin, Tao
    PHYSICAL REVIEW A, 2020, 101 (03)
  • [7] Variational Quantum Eigensolvers for Sparse Hamiltonians
    Kirby, William M.
    Love, Peter J.
    PHYSICAL REVIEW LETTERS, 2021, 127 (11)
  • [8] Simulating lattice gauge theories within quantum technologies
    Mari Carmen Bañuls
    Rainer Blatt
    Jacopo Catani
    Alessio Celi
    Juan Ignacio Cirac
    Marcello Dalmonte
    Leonardo Fallani
    Karl Jansen
    Maciej Lewenstein
    Simone Montangero
    Christine A. Muschik
    Benni Reznik
    Enrique Rico
    Luca Tagliacozzo
    Karel Van Acoleyen
    Frank Verstraete
    Uwe-Jens Wiese
    Matthew Wingate
    Jakub Zakrzewski
    Peter Zoller
    The European Physical Journal D, 2020, 74
  • [9] Simulating lattice gauge theories within quantum technologies
    Banuls, Mari Carmen
    Blatt, Rainer
    Catani, Jacopo
    Celi, Alessio
    Cirac, Juan Ignacio
    Dalmonte, Marcello
    Fallani, Leonardo
    Jansen, Karl
    Lewenstein, Maciej
    Montangero, Simone
    Muschik, Christine A.
    Reznik, Benni
    Rico, Enrique
    Tagliacozzo, Luca
    Van Acoleyen, Karel
    Verstraete, Frank
    Wiese, Uwe-Jens
    Wingate, Matthew
    Zakrzewski, Jakub
    Zoller, Peter
    EUROPEAN PHYSICAL JOURNAL D, 2020, 74 (08):
  • [10] Variational quantum eigensolvers in the era of distributed quantum computers
    Khait, Ilia
    Tham, Edwin
    Segal, Dvira
    Brodutch, Aharon
    PHYSICAL REVIEW A, 2023, 108 (05)