Lp quasi-norm minimization: algorithm and applications

被引:3
|
作者
Sleem, Omar M. [1 ]
Ashour, M. E. [2 ]
Aybat, N. S. [3 ]
Lagoa, Constantino M. [1 ]
机构
[1] Penn State Univ, Dept Elect Engn, State Coll, PA 16802 USA
[2] Qualcomm Technol Inc, Wireless R&D Dept, San Diego, CA 92121 USA
[3] Penn State Univ, Dept Ind & Mfg Engn, State Coll, PA 16802 USA
基金
美国国家卫生研究院;
关键词
Sparsity; Compressed sensing; Rank minimization; Alternating direction method of multipliers; System identification; Matrix completion; Proximal gradient method; MATRIX RANK MINIMIZATION; REWEIGHTED ALGORITHMS; L-1/2; REGULARIZATION; GRADIENT DESCENT; NONCONVEX; CONVERGENCE; RECONSTRUCTION; PROJECTION; SIGNALS; SYSTEMS;
D O I
10.1186/s13634-024-01114-6
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Sparsity finds applications in diverse areas such as statistics, machine learning, and signal processing. Computations over sparse structures are less complex compared to their dense counterparts and need less storage. This paper proposes a heuristic method for retrieving sparse approximate solutions of optimization problems via minimizing the lp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell _{p}$$\end{document} quasi-norm, where 0<p<1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0<p<1$$\end{document}. An iterative two-block algorithm for minimizing the lp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell _{p}$$\end{document} quasi-norm subject to convex constraints is proposed. The proposed algorithm requires solving for the roots of a scalar degree polynomial as opposed to applying a soft thresholding operator in the case of l1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell _{1}$$\end{document} norm minimization. The algorithm's merit relies on its ability to solve the lp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell _{p}$$\end{document} quasi-norm minimization subject to any convex constraints set. For the specific case of constraints defined by differentiable functions with Lipschitz continuous gradient, a second, faster algorithm is proposed. Using a proximal gradient step, we mitigate the convex projection step and hence enhance the algorithm's speed while proving its convergence. We present various applications where the proposed algorithm excels, namely, sparse signal reconstruction, system identification, and matrix completion. The results demonstrate the significant gains obtained by the proposed algorithm compared to other lp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell _{p}$$\end{document} quasi-norm based methods presented in previous literature.
引用
收藏
页数:28
相关论文
共 50 条
  • [41] Multi-band weighted lp norm minimization for image denoising
    Su, Yanchi
    Li, Zhanshan
    Yu, Haihong
    Wang, Zeyu
    INFORMATION SCIENCES, 2020, 537 (537) : 162 - 183
  • [42] Nonconvex low-rank tensor minimization based on lp norm
    Su Y.
    Liu G.
    Liu W.
    Zhu D.
    Moshi Shibie yu Rengong Zhineng/Pattern Recognition and Artificial Intelligence, 2019, 32 (06): : 494 - 503
  • [43] Robust Matrix Completion via Joint Schatten p-Norm and lp-Norm Minimization
    Nie, Feiping
    Wang, Hua
    Cai, Xiao
    Huang, Heng
    Ding, Chris
    12TH IEEE INTERNATIONAL CONFERENCE ON DATA MINING (ICDM 2012), 2012, : 566 - 574
  • [44] Exact NLMS Algorithm with lp-Norm Constraint
    Weruaga, Luis
    Jimaa, Shihab
    IEEE SIGNAL PROCESSING LETTERS, 2015, 22 (03) : 366 - 370
  • [45] Quasi-norm error bounds for the finite element approximation of some degenerate quasilinear parabolic equations and variational inequalities
    Liu, WB
    Barrett, JW
    NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 1995, 16 (9-10) : 1309 - 1321
  • [46] QUASI-NORM ERROR-BOUNDS FOR THE FINITE-ELEMENT APPROXIMATION OF A NON-NEWTONIAN FLOW
    BARRETT, JW
    LIU, WB
    NUMERISCHE MATHEMATIK, 1994, 68 (04) : 437 - 456
  • [47] Lloyd’s energy minimization in the Lp norm for quadrilateral surface mesh generation
    Tristan Carrier Baudouin
    Jean-François Remacle
    Emilie Marchandise
    Jonathan Lambrechts
    François Henrotte
    Engineering with Computers, 2014, 30 : 97 - 110
  • [48] An lp-norm minimization approach to time delay estimation in impulsive noise
    Zeng, Wen-Jun
    So, H. C.
    Zoubir, Abdelhak M.
    DIGITAL SIGNAL PROCESSING, 2013, 23 (04) : 1247 - 1254
  • [49] A typical reconstruction limit for compressed sensing based on Lp-norm minimization
    Kabashima, Y.
    Wadayama, T.
    Tanaka, T.
    JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2009,
  • [50] lp-Norm Minimization of Auto and Cross Correlation Sidelobes in MIMO Radars
    Raei, Ehsan
    Alaee-Kerahroodi, Mohammad
    Babu, Prabhu
    Shankar, Bhavani M. R.
    2022 23RD INTERNATIONAL RADAR SYMPOSIUM (IRS), 2022, : 92 - 97