Lp quasi-norm minimization: algorithm and applications

被引:3
|
作者
Sleem, Omar M. [1 ]
Ashour, M. E. [2 ]
Aybat, N. S. [3 ]
Lagoa, Constantino M. [1 ]
机构
[1] Penn State Univ, Dept Elect Engn, State Coll, PA 16802 USA
[2] Qualcomm Technol Inc, Wireless R&D Dept, San Diego, CA 92121 USA
[3] Penn State Univ, Dept Ind & Mfg Engn, State Coll, PA 16802 USA
基金
美国国家卫生研究院;
关键词
Sparsity; Compressed sensing; Rank minimization; Alternating direction method of multipliers; System identification; Matrix completion; Proximal gradient method; MATRIX RANK MINIMIZATION; REWEIGHTED ALGORITHMS; L-1/2; REGULARIZATION; GRADIENT DESCENT; NONCONVEX; CONVERGENCE; RECONSTRUCTION; PROJECTION; SIGNALS; SYSTEMS;
D O I
10.1186/s13634-024-01114-6
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Sparsity finds applications in diverse areas such as statistics, machine learning, and signal processing. Computations over sparse structures are less complex compared to their dense counterparts and need less storage. This paper proposes a heuristic method for retrieving sparse approximate solutions of optimization problems via minimizing the lp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell _{p}$$\end{document} quasi-norm, where 0<p<1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0<p<1$$\end{document}. An iterative two-block algorithm for minimizing the lp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell _{p}$$\end{document} quasi-norm subject to convex constraints is proposed. The proposed algorithm requires solving for the roots of a scalar degree polynomial as opposed to applying a soft thresholding operator in the case of l1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell _{1}$$\end{document} norm minimization. The algorithm's merit relies on its ability to solve the lp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell _{p}$$\end{document} quasi-norm minimization subject to any convex constraints set. For the specific case of constraints defined by differentiable functions with Lipschitz continuous gradient, a second, faster algorithm is proposed. Using a proximal gradient step, we mitigate the convex projection step and hence enhance the algorithm's speed while proving its convergence. We present various applications where the proposed algorithm excels, namely, sparse signal reconstruction, system identification, and matrix completion. The results demonstrate the significant gains obtained by the proposed algorithm compared to other lp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell _{p}$$\end{document} quasi-norm based methods presented in previous literature.
引用
收藏
页数:28
相关论文
共 50 条
  • [21] A color quantization algorithm based on minimization of modified Lp norm error in a CIELAB space
    Xue, Haitao
    Bauer, Peter
    Depalov, Dejan
    Bradburn, Brent
    Allebach, Jan P.
    Bouman, Charles A.
    COLOR IMAGING XVII: DISPLAYING, PROCESSING, HARDCOPY, AND APPLICATIONS, 2012, 8292
  • [22] QUASI-NORM OF AN ARITHMETICAL CONVOLUTION OPERATOR AND THE ORDER OF THE RIEMANN ZETA FUNCTION
    Hilberdink, Titus
    FUNCTIONES ET APPROXIMATIO COMMENTARII MATHEMATICI, 2013, 49 (02) : 201 - 220
  • [23] An Algorithm for Fast Constrained Nuclear Norm Minimization and Applications to Systems Identification
    Ayazoglu, Mustafa
    Sznaier, Mario
    2012 IEEE 51ST ANNUAL CONFERENCE ON DECISION AND CONTROL (CDC), 2012, : 3469 - 3475
  • [24] Image decomposition and completion using relative total variation and schatten quasi-norm regularization
    Li, Min
    Zhang, Weiqiang
    Xiao, Mingqing
    Xu, Chen
    NEUROCOMPUTING, 2021, 458 : 639 - 654
  • [25] The Interplay of Framelet Transform and l(p) Quasi-Norm to Interpolate Seismic Data
    Pan, Xiao
    Wu, Hao
    Chen, Yingpin
    Qin, Zhiqiang
    Wen, Xiaotao
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2023, 20
  • [26] On quasi-norm interpolation error estimation and a posteriori error estimates for p-Laplacian
    Liu, WB
    Yan, NN
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2002, 40 (05) : 1870 - 1895
  • [27] A posteriori Fe error control for p-laplacian by gradient recovery in quasi-norm
    Carstensen, Carsten
    Liu, W.
    Yan, N.
    MATHEMATICS OF COMPUTATION, 2006, 75 (256) : 1599 - 1616
  • [28] Fast and Simple Iterative Algorithm of Lp-norm Minimization for Under-determined Speech Separation
    Hirasawa, Yasuharu
    Yasuraoka, Naoki
    Takahashi, Toru
    Ogata, Tetsuya
    Okuno, Hiroshi G.
    12TH ANNUAL CONFERENCE OF THE INTERNATIONAL SPEECH COMMUNICATION ASSOCIATION 2011 (INTERSPEECH 2011), VOLS 1-5, 2011, : 1756 - 1759
  • [29] Complex nonconvex lp norm minimization for underdetermined source separation
    Vincent, Emmanuel
    INDEPENDENT COMPONENT ANALYSIS AND SIGNAL SEPARATION, PROCEEDINGS, 2007, 4666 : 430 - 437
  • [30] An lp Norm Minimization Using Auxiliary Function for Compressed Sensing
    Tsutsu, Hiroshi
    Morikawa, Yoshitaka
    INTERNATIONAL MULTICONFERENCE OF ENGINEERS AND COMPUTER SCIENTISTS, IMECS 2012, VOL I, 2012, : 712 - 715