Lp quasi-norm minimization: algorithm and applications

被引:3
|
作者
Sleem, Omar M. [1 ]
Ashour, M. E. [2 ]
Aybat, N. S. [3 ]
Lagoa, Constantino M. [1 ]
机构
[1] Penn State Univ, Dept Elect Engn, State Coll, PA 16802 USA
[2] Qualcomm Technol Inc, Wireless R&D Dept, San Diego, CA 92121 USA
[3] Penn State Univ, Dept Ind & Mfg Engn, State Coll, PA 16802 USA
基金
美国国家卫生研究院;
关键词
Sparsity; Compressed sensing; Rank minimization; Alternating direction method of multipliers; System identification; Matrix completion; Proximal gradient method; MATRIX RANK MINIMIZATION; REWEIGHTED ALGORITHMS; L-1/2; REGULARIZATION; GRADIENT DESCENT; NONCONVEX; CONVERGENCE; RECONSTRUCTION; PROJECTION; SIGNALS; SYSTEMS;
D O I
10.1186/s13634-024-01114-6
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Sparsity finds applications in diverse areas such as statistics, machine learning, and signal processing. Computations over sparse structures are less complex compared to their dense counterparts and need less storage. This paper proposes a heuristic method for retrieving sparse approximate solutions of optimization problems via minimizing the lp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell _{p}$$\end{document} quasi-norm, where 0<p<1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0<p<1$$\end{document}. An iterative two-block algorithm for minimizing the lp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell _{p}$$\end{document} quasi-norm subject to convex constraints is proposed. The proposed algorithm requires solving for the roots of a scalar degree polynomial as opposed to applying a soft thresholding operator in the case of l1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell _{1}$$\end{document} norm minimization. The algorithm's merit relies on its ability to solve the lp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell _{p}$$\end{document} quasi-norm minimization subject to any convex constraints set. For the specific case of constraints defined by differentiable functions with Lipschitz continuous gradient, a second, faster algorithm is proposed. Using a proximal gradient step, we mitigate the convex projection step and hence enhance the algorithm's speed while proving its convergence. We present various applications where the proposed algorithm excels, namely, sparse signal reconstruction, system identification, and matrix completion. The results demonstrate the significant gains obtained by the proposed algorithm compared to other lp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell _{p}$$\end{document} quasi-norm based methods presented in previous literature.
引用
收藏
页数:28
相关论文
共 50 条
  • [31] Quasi-norm a priori and a posteriori error estimates for the nonconforming approximation of p-Laplacian
    Liu, WB
    Yan, NN
    NUMERISCHE MATHEMATIK, 2001, 89 (02) : 341 - 378
  • [33] Lp Quasi Norm State Estimator for Power Systems
    Zhongliang Lyu
    Hua Wei
    Xiaoqing Bai
    Daiyu Xie
    Le Zhang
    Peijie Li
    JournalofModernPowerSystemsandCleanEnergy, 2022, 10 (04) : 871 - 882
  • [34] Lp Quasi Norm State Estimator for Power Systems
    Lyu, Zhongliang
    Wei, Hua
    Bai, Xiaoqing
    Xie, Daiyu
    Zhang, Le
    Li, Peijie
    JOURNAL OF MODERN POWER SYSTEMS AND CLEAN ENERGY, 2022, 10 (04) : 871 - 882
  • [35] Quasi-norm a priori and a posteriori error estimates for the nonconforming approximation of p-Laplacian
    Wenbin Liu
    Ningning Yan
    Numerische Mathematik, 2001, 89 : 341 - 378
  • [36] An algorithm for image reconstruction based on lp norm
    Ning Fang-Li
    He Bi-Jing
    Wei Juan
    ACTA PHYSICA SINICA, 2013, 62 (17)
  • [37] Evaluation of smoothing in an iterative lp-norm minimization algorithm for surface-based source localization of MEG
    Han, Jooman
    Kim, June Sic
    Chung, Chun Kee
    Park, Kwang Suk
    PHYSICS IN MEDICINE AND BIOLOGY, 2007, 52 (16): : 4791 - 4803
  • [38] Iterative thresholding algorithm based on non-convex method for modified lp-norm regularization minimization
    Cui, Angang
    Peng, Jigen
    Li, Haiyang
    Wen, Meng
    Jia, Junxiong
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2019, 347 (173-180) : 173 - 180
  • [39] A gradient descent based algorithm for lp minimization
    Jiang, Shan
    Fang, Shu-Cherng
    Nie, Tiantian
    Xing, Wenxun
    EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2020, 283 (01) : 47 - 56
  • [40] On Schatten-q quasi-norm induced matrix decomposition model for salient object detection
    Li, Min
    Zhang, Yao
    Xiao, Mingqing
    Xu, Chen
    Zhang, Weiqiang
    PATTERN RECOGNITION, 2019, 96