Lp quasi-norm minimization: algorithm and applications

被引:3
|
作者
Sleem, Omar M. [1 ]
Ashour, M. E. [2 ]
Aybat, N. S. [3 ]
Lagoa, Constantino M. [1 ]
机构
[1] Penn State Univ, Dept Elect Engn, State Coll, PA 16802 USA
[2] Qualcomm Technol Inc, Wireless R&D Dept, San Diego, CA 92121 USA
[3] Penn State Univ, Dept Ind & Mfg Engn, State Coll, PA 16802 USA
基金
美国国家卫生研究院;
关键词
Sparsity; Compressed sensing; Rank minimization; Alternating direction method of multipliers; System identification; Matrix completion; Proximal gradient method; MATRIX RANK MINIMIZATION; REWEIGHTED ALGORITHMS; L-1/2; REGULARIZATION; GRADIENT DESCENT; NONCONVEX; CONVERGENCE; RECONSTRUCTION; PROJECTION; SIGNALS; SYSTEMS;
D O I
10.1186/s13634-024-01114-6
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Sparsity finds applications in diverse areas such as statistics, machine learning, and signal processing. Computations over sparse structures are less complex compared to their dense counterparts and need less storage. This paper proposes a heuristic method for retrieving sparse approximate solutions of optimization problems via minimizing the lp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell _{p}$$\end{document} quasi-norm, where 0<p<1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0<p<1$$\end{document}. An iterative two-block algorithm for minimizing the lp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell _{p}$$\end{document} quasi-norm subject to convex constraints is proposed. The proposed algorithm requires solving for the roots of a scalar degree polynomial as opposed to applying a soft thresholding operator in the case of l1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell _{1}$$\end{document} norm minimization. The algorithm's merit relies on its ability to solve the lp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell _{p}$$\end{document} quasi-norm minimization subject to any convex constraints set. For the specific case of constraints defined by differentiable functions with Lipschitz continuous gradient, a second, faster algorithm is proposed. Using a proximal gradient step, we mitigate the convex projection step and hence enhance the algorithm's speed while proving its convergence. We present various applications where the proposed algorithm excels, namely, sparse signal reconstruction, system identification, and matrix completion. The results demonstrate the significant gains obtained by the proposed algorithm compared to other lp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell _{p}$$\end{document} quasi-norm based methods presented in previous literature.
引用
收藏
页数:28
相关论文
共 50 条
  • [1] Lp quasi-norm minimization: algorithm and applications
    Omar M. Sleem
    M. E. Ashour
    N. S. Aybat
    Constantino M. Lagoa
    EURASIP Journal on Advances in Signal Processing, 2024
  • [2] Lp Quasi-norm Minimization
    Ashour, M. E.
    Lagoa, C. M.
    Aybat, N. S.
    CONFERENCE RECORD OF THE 2019 FIFTY-THIRD ASILOMAR CONFERENCE ON SIGNALS, SYSTEMS & COMPUTERS, 2019, : 726 - 730
  • [3] Scalable Algorithms for Tractable Schatten Quasi-Norm Minimization
    Shang, Fanhua
    Liu, Yuanyuan
    Cheng, James
    THIRTIETH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2016, : 2016 - 2022
  • [4] Tractable and Scalable Schatten Quasi-Norm Approximations for Rank Minimization
    Shang, Fanhua
    Liu, Yuanyuan
    Cheng, James
    ARTIFICIAL INTELLIGENCE AND STATISTICS, VOL 51, 2016, 51 : 620 - 629
  • [5] Iterative methods for projection onto the lp quasi-norm ball
    An, Qi
    Zhang, Nana
    Jiang, Shan
    OPTIMIZATION METHODS & SOFTWARE, 2024,
  • [6] The Interplay of Framelet Transform and lp Quasi-Norm to Interpolate Seismic Data
    Pan, Xiao
    Wu, Hao
    Chen, Yingpin
    Qin, Zhiqiang
    Wen, Xiaotao
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2023, 20
  • [7] Online Schatten quasi-norm minimization for robust principal component analysis
    Jia, Xixi
    Feng, Xiangchu
    Wang, Weiwei
    Huang, Hua
    Xu, Chen
    INFORMATION SCIENCES, 2019, 476 : 83 - 94
  • [8] QUASI-NORM SPACES
    METZLER, R
    NAKANO, H
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1966, 123 (01) : 1 - &
  • [9] Iterative Reweighted Minimization for Generalized Norm/Quasi-Norm Difference Regularized Unconstrained Nonlinear Programming
    Cen, Yi
    Zhang, Linna
    Wang, Ke
    Cen, Yigang
    IEEE ACCESS, 2019, 7 : 153102 - 153122
  • [10] Fixed point theorems in generating spaces of quasi-norm family and applications
    Xiao, Jian-Zhong
    Zhu, Xing-Hua
    FIXED POINT THEORY AND APPLICATIONS, 2006, 2006 (1)