Polynomial identities and images of polynomials on null-filiform Leibniz algebras

被引:1
|
作者
de Mello, Thiago Castilho [1 ]
Souza, Manuela da Silva [2 ]
机构
[1] Univ Fed Sao Paulo, Inst Ciencia & Tecnol, Sao Paulo, SP, Brazil
[2] Univ Fed Bahia, Inst Matemat & Estat, Salvador, BA, Brazil
基金
巴西圣保罗研究基金会;
关键词
Images of polynomials on algebras; Leibniz algebras; Null-filiform Leibniz algebras; Polynomial identities; L'vov-Kaplansky conjecture; MULTILINEAR POLYNOMIALS;
D O I
10.1016/j.laa.2023.09.016
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we study identities and images of polynomials on null-filiform Leibniz algebras. If L-n is an n-dimensional null-filiform Leibniz algebra, we exhibit a finite minimal basis for Id(L-n), the polynomial identities of L-n, and we explicitly compute the images of multihomogeneous polynomials on L-n. We present necessary and sufficient conditions for the image of a multihomogeneous polynomial f to be a subspace of L-n. For the particular case of multilinear polynomials, we prove that the image is always a vector space, showing that the analogue of the L'vov-Kaplansky conjecture holds for L-n. We also prove similar results for an analog of null-filiform Leibniz algebras in the infinite-dimensional case. (c) 2023 Elsevier Inc. All rights reserved.
引用
收藏
页码:246 / 260
页数:15
相关论文
共 50 条
  • [31] On Low-Dimensional Filiform Leibniz Algebras and Their Invariants
    Rakhimov, Isamiddin S.
    Hassan, Munther A.
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2011, 34 (03) : 475 - 485
  • [32] On isomorphism criterion for a subclass of complex filiform Leibniz algebras
    Rakhimov, I. S.
    Khudoyberdiyev, A. Kh.
    Omirov, B. A.
    Atan, K. A. Mohd
    INTERNATIONAL JOURNAL OF ALGEBRA AND COMPUTATION, 2017, 27 (07) : 953 - 972
  • [33] 3-filiform Leibniz algebras of maximum length
    Camacho, L. M.
    Canete, E. M.
    Gomez, J. R.
    Omirov, B. A.
    SIBERIAN MATHEMATICAL JOURNAL, 2016, 57 (01) : 24 - 35
  • [34] THE CLASSIFICATION OF NATURALLY GRADED p-FILIFORM LEIBNIZ ALGEBRAS
    Camacho, L. M.
    Gomez, J. R.
    Gonzalez, A. J.
    Omirov, B. A.
    COMMUNICATIONS IN ALGEBRA, 2011, 39 (01) : 153 - 168
  • [35] The Classification of Non-Characteristically Nilpotent Filiform Leibniz Algebras
    Khudoyberdiyev, A. K.
    Ladra, M.
    Omirov, B. A.
    ALGEBRAS AND REPRESENTATION THEORY, 2014, 17 (03) : 945 - 969
  • [36] Maximal Solvable Leibniz Algebras with a Quasi-Filiform Nilradical
    Abdurasulov, Kobiljon
    Adashev, Jobir
    Kaygorodov, Ivan
    MATHEMATICS, 2023, 11 (05)
  • [37] Local automorphisms of some p-filiform Leibniz algebras
    Yusupov, Bakhtiyor
    RICERCHE DI MATEMATICA, 2024,
  • [38] Naturally graded (n-3)-filiform Leibniz algebras
    Camacho, L. M.
    Gomez, J. R.
    Omirov, B. A.
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2010, 433 (02) : 433 - 446
  • [39] ON ISOMORPHISMS AND INVARIANTS OF FINITE DIMENSIONAL COMPLEX FILIFORM LEIBNIZ ALGEBRAS
    Rakhimov, I. S.
    Bekbaev, U. D.
    COMMUNICATIONS IN ALGEBRA, 2010, 38 (12) : 4705 - 4738
  • [40] The Classification of Non-Characteristically Nilpotent Filiform Leibniz Algebras
    A. K. Khudoyberdiyev
    M. Ladra
    B. A. Omirov
    Algebras and Representation Theory, 2014, 17 : 945 - 969