3-filiform Leibniz algebras of maximum length

被引:0
|
作者
Camacho, L. M. [1 ]
Canete, E. M. [1 ]
Gomez, J. R. [1 ]
Omirov, B. A. [2 ]
机构
[1] Univ Seville, Seville, Spain
[2] Natl Univ Uzbekistan, Inst Math, Tashkent, Uzbekistan
关键词
Lie algebra; Leibniz algebra; nilpotency; natural gradation; characteristic sequence; p-filiform algebra; maximum length; cohomology; LIE-ALGEBRAS; FILIFORM;
D O I
10.1134/S0037446616010043
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We complete the description of 3-filiform Leibniz algebras of maximum length. Moreover, using the good structure of algebras of maximum length, we study some of their cohomological properties. Our main tools are the previous results by Cabezas and Pastor [1], the construction of an appropriate homogeneous basis in the considered connected gradation and the computational support provided by two programs implemented in Mathematica.
引用
收藏
页码:24 / 35
页数:12
相关论文
共 50 条
  • [1] 3-filiform Leibniz algebras of maximum length
    L. M. Camacho
    E. M. Cañete
    J. R. Gómez
    B. A. Omirov
    Siberian Mathematical Journal, 2016, 57 : 24 - 35
  • [2] 3-Filiform Leibniz algebras of maximum length, whose naturally graded algebras are Lie algebras
    Camacho, L. M.
    Canete, E. M.
    Gomez, J. R.
    Omirov, B. A.
    LINEAR & MULTILINEAR ALGEBRA, 2011, 59 (09): : 1039 - 1058
  • [3] On filiform and 2-filiform Leibniz algebras of maximum length
    Cabezas, J. M.
    Camacho, L. M.
    Rodriguez, I. M.
    JOURNAL OF LIE THEORY, 2008, 18 (02) : 335 - 350
  • [4] QUASI-FILIFORM LEIBNIZ ALGEBRAS OF MAXIMUM LENGTH
    Camacho, L. M.
    Canete, E. M.
    Gomez, J. R.
    Omirov, B. A.
    SIBERIAN MATHEMATICAL JOURNAL, 2011, 52 (05) : 840 - 853
  • [5] Quasi-filiform Leibniz algebras of maximum length
    Camacho L.M.
    Cañete E.M.
    Gómez J.R.
    Omirov B.A.
    Siberian Mathematical Journal, 2011, 52 (5) : 840 - 853
  • [6] p-Filiform Leibniz algebras of maximum length
    Camacho, L. M.
    Canete, E. M.
    Gomez, J. R.
    Omirov, B. A.
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2014, 450 : 316 - 333
  • [7] Solvable Leibniz algebras with quasi-filiform Lie algebras of maximum length nilradicals
    Muratova, Kh. A.
    Ladra, M.
    Omirov, B. A.
    Sattarov, A. M.
    COMMUNICATIONS IN ALGEBRA, 2020, 48 (08) : 3525 - 3542
  • [8] Solvable Leibniz algebras whose nilradical is a quasi-filiform Leibniz algebra of maximum length
    Abdurasulov, Kobiljon K.
    Adashev, Jobir Q.
    Casas, Jose M.
    Omirov, Bakhrom A.
    COMMUNICATIONS IN ALGEBRA, 2019, 47 (04) : 1578 - 1594
  • [9] On the derivations of filiform Leibniz algebras
    Omirov, BA
    MATHEMATICAL NOTES, 2005, 77 (5-6) : 677 - 685
  • [10] On the Derivations of Filiform Leibniz Algebras
    B. A. Omirov
    Mathematical Notes, 2005, 77 : 677 - 685