3-filiform Leibniz algebras of maximum length

被引:0
|
作者
Camacho, L. M. [1 ]
Canete, E. M. [1 ]
Gomez, J. R. [1 ]
Omirov, B. A. [2 ]
机构
[1] Univ Seville, Seville, Spain
[2] Natl Univ Uzbekistan, Inst Math, Tashkent, Uzbekistan
关键词
Lie algebra; Leibniz algebra; nilpotency; natural gradation; characteristic sequence; p-filiform algebra; maximum length; cohomology; LIE-ALGEBRAS; FILIFORM;
D O I
10.1134/S0037446616010043
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We complete the description of 3-filiform Leibniz algebras of maximum length. Moreover, using the good structure of algebras of maximum length, we study some of their cohomological properties. Our main tools are the previous results by Cabezas and Pastor [1], the construction of an appropriate homogeneous basis in the considered connected gradation and the computational support provided by two programs implemented in Mathematica.
引用
收藏
页码:24 / 35
页数:12
相关论文
共 50 条
  • [41] Filiform Lie Algebras with Low Derived Length
    F. J. Castro-Jiménez
    M. Ceballos
    J. Núñez-Valdés
    Mediterranean Journal of Mathematics, 2020, 17
  • [42] Transposed Poisson Structures on Low Dimensional Quasi-Filiform Lie Algebras of Maximum Length
    K. Abdurasulov
    F. Deraman
    A. Saydaliyev
    S. H. Sapar
    Lobachevskii Journal of Mathematics, 2024, 45 (11) : 5735 - 5749
  • [43] Solvable extensions of the naturally graded quasi-filiform Leibniz algebras
    Abdurasulov, K. K.
    Adashev, J. Q.
    COMMUNICATIONS IN ALGEBRA, 2023, 51 (02) : 510 - 527
  • [44] Central extensions of null-filiform and naturally graded filiform non-Lie Leibniz algebras
    Adashev, J. K.
    Camacho, L. M.
    Omirov, B. A.
    JOURNAL OF ALGEBRA, 2017, 479 : 461 - 486
  • [45] Polynomial identities and images of polynomials on null-filiform Leibniz algebras
    de Mello, Thiago Castilho
    Souza, Manuela da Silva
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2023, 679 : 246 - 260
  • [46] Classification of a Subclass of 10-Dimensional Complex Filiform Leibniz Algebras
    Mohamed, N. S.
    Husain, S. K. S.
    Rakhimov, I. S.
    MALAYSIAN JOURNAL OF MATHEMATICAL SCIENCES, 2019, 13 (03): : 465 - 485
  • [47] Filiform Lie Algebras with Low Derived Length
    Castro-Jimenez, F. J.
    Ceballos, M.
    Nunez-Valdes, J.
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2020, 17 (06)
  • [48] Isomorphism classes and invariants of low-dimensional filiform Leibniz algebras
    Abdulkareem, A. O.
    Rakhimov, I. S.
    Husain, S. K. Said
    LINEAR & MULTILINEAR ALGEBRA, 2015, 63 (11): : 2254 - 2274
  • [49] Classification of a subclass of low-dimensional complex filiform Leibniz algebras
    Rakhimov, I. S.
    Husain, S. K. Said
    LINEAR & MULTILINEAR ALGEBRA, 2011, 59 (03): : 339 - 354
  • [50] On a description of irreducible component in the set of nilpotent Leibniz algebras containing the algebra of maximal nilindex, and classification of graded filiform Leibniz algebras
    Ayupov, SA
    Omirov, BA
    COMPUTER ALGEBRA IN SCIENTIFIC COMPUTING, 2000, : 21 - 34