Polynomial identities and images of polynomials on null-filiform Leibniz algebras

被引:1
|
作者
de Mello, Thiago Castilho [1 ]
Souza, Manuela da Silva [2 ]
机构
[1] Univ Fed Sao Paulo, Inst Ciencia & Tecnol, Sao Paulo, SP, Brazil
[2] Univ Fed Bahia, Inst Matemat & Estat, Salvador, BA, Brazil
基金
巴西圣保罗研究基金会;
关键词
Images of polynomials on algebras; Leibniz algebras; Null-filiform Leibniz algebras; Polynomial identities; L'vov-Kaplansky conjecture; MULTILINEAR POLYNOMIALS;
D O I
10.1016/j.laa.2023.09.016
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we study identities and images of polynomials on null-filiform Leibniz algebras. If L-n is an n-dimensional null-filiform Leibniz algebra, we exhibit a finite minimal basis for Id(L-n), the polynomial identities of L-n, and we explicitly compute the images of multihomogeneous polynomials on L-n. We present necessary and sufficient conditions for the image of a multihomogeneous polynomial f to be a subspace of L-n. For the particular case of multilinear polynomials, we prove that the image is always a vector space, showing that the analogue of the L'vov-Kaplansky conjecture holds for L-n. We also prove similar results for an analog of null-filiform Leibniz algebras in the infinite-dimensional case. (c) 2023 Elsevier Inc. All rights reserved.
引用
收藏
页码:246 / 260
页数:15
相关论文
共 50 条
  • [1] Classification of solvable Leibniz algebras with null-filiform nilradical
    Casas, J. M.
    Ladra, M.
    Omirov, B. A.
    Karimjanov, I. A.
    LINEAR & MULTILINEAR ALGEBRA, 2013, 61 (06): : 758 - 774
  • [2] Varieties of Null-Filiform Leibniz Algebras Under the Action of Hopf Algebras
    Centrone, Lucio
    Zargeh, Chia
    ALGEBRAS AND REPRESENTATION THEORY, 2023, 26 (02) : 631 - 648
  • [3] Varieties of Null-Filiform Leibniz Algebras Under the Action of Hopf Algebras
    Lucio Centrone
    Chia Zargeh
    Algebras and Representation Theory, 2023, 26 : 631 - 648
  • [4] On solvable Leibniz algebras whose nilradical is a direct sum of null-filiform algebras
    Khudoyberdiyev, A. Kh
    Ladra, M.
    Omirov, B. A.
    LINEAR & MULTILINEAR ALGEBRA, 2014, 62 (09): : 1220 - 1239
  • [5] Abelian groups gradings on null-filiform and one-parametric filiform Leibniz algebras
    Jesus Calderon, Antonio
    Maria Camacho, Luisa
    Kaygorodov, Ivan
    Omirov, Bakhrom
    JOURNAL OF GEOMETRY AND PHYSICS, 2021, 170
  • [6] Local Derivations and Automorphisms of Direct Sum Null-Filiform Leibniz Algebras
    J. Q. Adashev
    B. B. Yusupov
    Lobachevskii Journal of Mathematics, 2022, 43 : 3407 - 3413
  • [7] Local Derivations and Automorphisms of Direct Sum Null-Filiform Leibniz Algebras
    Adashev, J. Q.
    Yusupov, B. B.
    LOBACHEVSKII JOURNAL OF MATHEMATICS, 2022, 43 (12) : 3407 - 3413
  • [8] Central extensions of null-filiform and naturally graded filiform non-Lie Leibniz algebras
    Adashev, J. K.
    Camacho, L. M.
    Omirov, B. A.
    JOURNAL OF ALGEBRA, 2017, 479 : 461 - 486
  • [9] Infinitesimal deformations of null-filiform Leibniz superalgebras
    Khudoyberdiyev, A. Kh.
    Omirov, B. A.
    JOURNAL OF GEOMETRY AND PHYSICS, 2013, 74 : 370 - 380
  • [10] Local and 2-Local Automorphisms of Null-Filiform and Filiform Zinbiel Algebras
    Arzikulov, Farhodjon N.
    Karimjanov, Iqboljon A.
    Umrzaqov, Sardorbek M.
    SSRN,