Polynomial identities and images of polynomials on null-filiform Leibniz algebras

被引:1
|
作者
de Mello, Thiago Castilho [1 ]
Souza, Manuela da Silva [2 ]
机构
[1] Univ Fed Sao Paulo, Inst Ciencia & Tecnol, Sao Paulo, SP, Brazil
[2] Univ Fed Bahia, Inst Matemat & Estat, Salvador, BA, Brazil
基金
巴西圣保罗研究基金会;
关键词
Images of polynomials on algebras; Leibniz algebras; Null-filiform Leibniz algebras; Polynomial identities; L'vov-Kaplansky conjecture; MULTILINEAR POLYNOMIALS;
D O I
10.1016/j.laa.2023.09.016
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we study identities and images of polynomials on null-filiform Leibniz algebras. If L-n is an n-dimensional null-filiform Leibniz algebra, we exhibit a finite minimal basis for Id(L-n), the polynomial identities of L-n, and we explicitly compute the images of multihomogeneous polynomials on L-n. We present necessary and sufficient conditions for the image of a multihomogeneous polynomial f to be a subspace of L-n. For the particular case of multilinear polynomials, we prove that the image is always a vector space, showing that the analogue of the L'vov-Kaplansky conjecture holds for L-n. We also prove similar results for an analog of null-filiform Leibniz algebras in the infinite-dimensional case. (c) 2023 Elsevier Inc. All rights reserved.
引用
收藏
页码:246 / 260
页数:15
相关论文
共 50 条
  • [21] QUASI-FILIFORM LEIBNIZ ALGEBRAS OF MAXIMUM LENGTH
    Camacho, L. M.
    Canete, E. M.
    Gomez, J. R.
    Omirov, B. A.
    SIBERIAN MATHEMATICAL JOURNAL, 2011, 52 (05) : 840 - 853
  • [22] Quasi-filiform Leibniz algebras of maximum length
    Camacho L.M.
    Cañete E.M.
    Gómez J.R.
    Omirov B.A.
    Siberian Mathematical Journal, 2011, 52 (5) : 840 - 853
  • [23] Minimal representations of filiform Lie algebras and their application for construction of Leibniz algebras
    Karimjanov, I. A.
    Ladra, M.
    JOURNAL OF GEOMETRY AND PHYSICS, 2019, 144 : 235 - 244
  • [24] NATURALLY GRADED 2-FILIFORM LEIBNIZ ALGEBRAS
    Camacho, L. M.
    Gomez, J. R.
    Gonzalez, A. J.
    Omirov, B. A.
    COMMUNICATIONS IN ALGEBRA, 2010, 38 (10) : 3671 - 3685
  • [25] Infinitesimal deformations of naturally graded filiform Leibniz algebras
    Khudoyberdiyev, A. Kh.
    Omirov, B. A.
    JOURNAL OF GEOMETRY AND PHYSICS, 2014, 86 : 149 - 163
  • [26] p-Filiform Leibniz algebras of maximum length
    Camacho, L. M.
    Canete, E. M.
    Gomez, J. R.
    Omirov, B. A.
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2014, 450 : 316 - 333
  • [27] Naturally graded quasi-filiform Leibniz algebras
    Camacho, L. M.
    Gomez, J. R.
    Gonzalez, A. J.
    Omirov, B. A.
    JOURNAL OF SYMBOLIC COMPUTATION, 2009, 44 (05) : 527 - 539
  • [28] Central extensions of 2-filiform Leibniz algebras
    Adashev, Jobir
    COMMUNICATIONS IN ALGEBRA, 2023, 51 (05) : 1886 - 1899
  • [29] 3-filiform Leibniz algebras of maximum length
    L. M. Camacho
    E. M. Cañete
    J. R. Gómez
    B. A. Omirov
    Siberian Mathematical Journal, 2016, 57 : 24 - 35
  • [30] ON LIE-LIKE COMPLEX FILIFORM LEIBNIZ ALGEBRAS
    Omirov, B. A.
    Rakhimov, I. S.
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2009, 79 (03) : 391 - 404