Images of polynomials on algebras;
Leibniz algebras;
Null-filiform Leibniz algebras;
Polynomial identities;
L'vov-Kaplansky conjecture;
MULTILINEAR POLYNOMIALS;
D O I:
10.1016/j.laa.2023.09.016
中图分类号:
O29 [应用数学];
学科分类号:
070104 ;
摘要:
In this paper we study identities and images of polynomials on null-filiform Leibniz algebras. If L-n is an n-dimensional null-filiform Leibniz algebra, we exhibit a finite minimal basis for Id(L-n), the polynomial identities of L-n, and we explicitly compute the images of multihomogeneous polynomials on L-n. We present necessary and sufficient conditions for the image of a multihomogeneous polynomial f to be a subspace of L-n. For the particular case of multilinear polynomials, we prove that the image is always a vector space, showing that the analogue of the L'vov-Kaplansky conjecture holds for L-n. We also prove similar results for an analog of null-filiform Leibniz algebras in the infinite-dimensional case. (c) 2023 Elsevier Inc. All rights reserved.
机构:
Univ Santiago de Compostela, Dept Matemat, Santiago De Compostela 15782, SpainUniv Santiago de Compostela, Dept Matemat, Santiago De Compostela 15782, Spain
Karimjanov, I. A.
Ladra, M.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Santiago de Compostela, Dept Matemat, Santiago De Compostela 15782, SpainUniv Santiago de Compostela, Dept Matemat, Santiago De Compostela 15782, Spain
机构:
Univ Putra Malaysia, Dept Math, Inst Math Res INSPEM, Fac Sci, Serdang 43400, Darul Ehsan, MalaysiaUzbek Acad Sci, Inst Math, Tashkent 100125, Uzbekistan