Principles and challenges of modeling temporal and spatial omics data

被引:18
|
作者
Velten, Britta [1 ,2 ,3 ,4 ]
Stegle, Oliver [1 ,2 ,5 ]
机构
[1] German Canc Res Ctr, Div Computat Genom & Syst Genet, Heidelberg, Germany
[2] Wellcome Sanger Inst, Cellular Genet Programme, Cambridge, England
[3] Heidelberg Univ, Ctr Organismal Studies, Heidelberg, Germany
[4] Heidelberg Univ, Interdisciplinary Ctr Sci Comp IWR, Heidelberg, Germany
[5] European Mol Biol Lab, Genome Biol Unit, Heidelberg, Germany
关键词
GENE REGULATORY NETWORKS; COMMON COORDINATE FRAMEWORK; LONGITUDINAL MULTI-OMICS; CELL RNA-SEQ; SINGLE-CELL; BREAST-CANCER; EXPRESSION; TIME; DYNAMICS; INFERENCE;
D O I
10.1038/s41592-023-01992-y
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Studies with temporal or spatial resolution are crucial to understand the molecular dynamics and spatial dependencies underlying a biological process or system. With advances in high-throughput omic technologies, time- and space-resolved molecular measurements at scale are increasingly accessible, providing new opportunities to study the role of timing or structure in a wide range of biological questions. At the same time, analyses of the data being generated in the context of spatiotemporal studies entail new challenges that need to be considered, including the need to account for temporal and spatial dependencies and compare them across different scales, biological samples or conditions. In this Review, we provide an overview of common principles and challenges in the analysis of temporal and spatial omics data. We discuss statistical concepts to model temporal and spatial dependencies and highlight opportunities for adapting existing analysis methods to data with temporal and spatial dimensions.
引用
收藏
页码:1462 / 1474
页数:13
相关论文
共 50 条
  • [41] Spatial and Spatio-Temporal Models for Modeling Epidemiological Data with Excess Zeros
    Arab, Ali
    INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH, 2015, 12 (09): : 10536 - 10548
  • [42] Modeling spatial and temporal change of soil erosion based on multi-temporal remotely sensed data
    Liu, Pei
    Du, PeiJun
    Han, RuiMei
    Ma, Chao
    Zou, YouFeng
    SCIENCES IN COLD AND ARID REGIONS, 2015, 7 (06): : 702 - 708
  • [43] SODB facilitates comprehensive exploration of spatial omics data
    Zhiyuan Yuan
    Wentao Pan
    Xuan Zhao
    Fangyuan Zhao
    Zhimeng Xu
    Xiu Li
    Yi Zhao
    Michael Q. Zhang
    Jianhua Yao
    Nature Methods, 2023, 20 : 387 - 399
  • [44] SpaCeNet: Spatial Cellular Networks from Omics Data
    Schrod, Stefan
    Lueck, Niklas
    Lohmayer, Robert
    Solbrig, Stefan
    Wipfler, Tina
    Shutta, Katherine H.
    Ben Guebila, Marouen
    Schaefer, Andreas
    Beissbarth, Tim
    Zacharias, Helena U.
    Oefner, Peter J.
    Quackenbush, John
    Altenbuchinger, Michael
    RESEARCH IN COMPUTATIONAL MOLECULAR BIOLOGY, RECOMB 2024, 2024, 14758 : 344 - 347
  • [45] Modeling spatial and temporal change of soil erosion based on multi-temporal remotely sensed data
    Pei Liu
    PeiJun Du
    RuiMei Han
    Chao Ma
    YouFeng Zou
    Sciences in Cold and Arid Regions, 2015, 7 (06) : 702 - 708
  • [46] ON INDEXING SPATIAL AND TEMPORAL DATA
    SALZBERG, B
    INFORMATION SYSTEMS, 1994, 19 (06) : 447 - 465
  • [47] Resolving tissue complexity by multimodal spatial omics modeling with MISO
    Kyle Coleman
    Amelia Schroeder
    Melanie Loth
    Daiwei Zhang
    Jeong Hwan Park
    Ji-Youn Sung
    Niklas Blank
    Alexis J. Cowan
    Xuyu Qian
    Jianfeng Chen
    Jiahui Jiang
    Hanying Yan
    Laith Z. Samarah
    Jean R. Clemenceau
    Inyeop Jang
    Minji Kim
    Isabel Barnfather
    Joshua D. Rabinowitz
    Yanxiang Deng
    Edward B. Lee
    Alexander Lazar
    Jianjun Gao
    Emma E. Furth
    Tae Hyun Hwang
    Linghua Wang
    Christoph A. Thaiss
    Jian Hu
    Mingyao Li
    Nature Methods, 2025, 22 (3) : 530 - 538
  • [48] MODELING SPATIAL AND TEMPORAL VARIABILITY OF DENITRIFICATION
    ARAH, JRM
    BIOLOGY AND FERTILITY OF SOILS, 1990, 9 (01) : 71 - 77
  • [49] Machine learning for precision medicine forecasts and challenges when incorporating non omics and omics data
    Susymary, J.
    Deepalakshmi, P.
    INTELLIGENT DECISION TECHNOLOGIES-NETHERLANDS, 2021, 15 (01): : 69 - 85
  • [50] Mathematical modeling of the brain: Principles and challenges - Comments
    Salcman, Michael
    Liu, Charles Y.
    Hodge, Charles J., Jr.
    Pilitsis, Julie G.
    Bakay, Roy A. E.
    NEUROSURGERY, 2008, 62 (05) : 1156 - 1157