Principles and challenges of modeling temporal and spatial omics data

被引:18
|
作者
Velten, Britta [1 ,2 ,3 ,4 ]
Stegle, Oliver [1 ,2 ,5 ]
机构
[1] German Canc Res Ctr, Div Computat Genom & Syst Genet, Heidelberg, Germany
[2] Wellcome Sanger Inst, Cellular Genet Programme, Cambridge, England
[3] Heidelberg Univ, Ctr Organismal Studies, Heidelberg, Germany
[4] Heidelberg Univ, Interdisciplinary Ctr Sci Comp IWR, Heidelberg, Germany
[5] European Mol Biol Lab, Genome Biol Unit, Heidelberg, Germany
关键词
GENE REGULATORY NETWORKS; COMMON COORDINATE FRAMEWORK; LONGITUDINAL MULTI-OMICS; CELL RNA-SEQ; SINGLE-CELL; BREAST-CANCER; EXPRESSION; TIME; DYNAMICS; INFERENCE;
D O I
10.1038/s41592-023-01992-y
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Studies with temporal or spatial resolution are crucial to understand the molecular dynamics and spatial dependencies underlying a biological process or system. With advances in high-throughput omic technologies, time- and space-resolved molecular measurements at scale are increasingly accessible, providing new opportunities to study the role of timing or structure in a wide range of biological questions. At the same time, analyses of the data being generated in the context of spatiotemporal studies entail new challenges that need to be considered, including the need to account for temporal and spatial dependencies and compare them across different scales, biological samples or conditions. In this Review, we provide an overview of common principles and challenges in the analysis of temporal and spatial omics data. We discuss statistical concepts to model temporal and spatial dependencies and highlight opportunities for adapting existing analysis methods to data with temporal and spatial dimensions.
引用
收藏
页码:1462 / 1474
页数:13
相关论文
共 50 条
  • [31] Challenges in computational discovery of bioactive peptides in 'omics data
    Coelho, Luis Pedro
    Santos-Jr, Celio Dias
    de la Fuente-nunez, Cesar
    PROTEOMICS, 2024, 24 (12-13)
  • [32] Spatial and Temporal Principles of Electrophysiological Connectome Dynamics
    Sadaghiani, Sepideh
    INTERNATIONAL JOURNAL OF PSYCHOPHYSIOLOGY, 2021, 168 : S94 - S95
  • [33] Integration of multi-omics and non-omics data: AI approaches and challenges
    Lopez de Maturana, Evangelina
    Sabroso, Sergio
    Malats, Nuria
    HUMAN HEREDITY, 2022, VOL. (SUPPL 1) : 24 - 24
  • [34] MODELING TEMPORAL DATA
    TANSEL, AU
    INFORMATION AND SOFTWARE TECHNOLOGY, 1990, 32 (08) : 514 - 520
  • [35] Nanopore approaches for single-molecule temporal omics: promises and challenges
    Meng-Yin Li
    Jie Jiang
    Jun-Ge Li
    Hongyan Niu
    Yi-Lun Ying
    Ruijun Tian
    Yi-Tao Long
    Nature Methods, 2025, 22 (2) : 241 - 253
  • [36] Modeling spatial-temporal binary data using Markov random fields
    Jun Zhu
    Hsin-Cheng Huang
    Jungpin Wu
    Journal of Agricultural, Biological, and Environmental Statistics, 2005, 10 : 212 - 225
  • [37] Spatial-temporal Data Modeling and Visualizing Method for UUV Environmental Perception
    Wang Hongjian
    Zhang Xuelian
    Lv Hougli
    Xu Xin
    PROCEEDINGS OF THE 28TH CHINESE CONTROL AND DECISION CONFERENCE (2016 CCDC), 2016, : 5395 - 5402
  • [38] SODB facilitates comprehensive exploration of spatial omics data
    Yuan, Zhiyuan
    Pan, Wentao
    Zhao, Xuan
    Zhao, Fangyuan
    Xu, Zhimeng
    Li, Xiu
    Zhao, Yi
    Zhang, Michael Q.
    Yao, Jianhua
    NATURE METHODS, 2023, 20 (03) : 387 - +
  • [39] SpatialData: an open and universal data framework for spatial omics
    Marconato, Luca
    Palla, Giovanni
    Yamauchi, Kevin A.
    Virshup, Isaac
    Heidari, Elyas
    Treis, Tim
    Vierdag, Wouter-Michiel
    Toth, Marcella
    Stockhaus, Sonja
    Shrestha, Rahul B.
    Rombaut, Benjamin
    Pollaris, Lotte
    Lehner, Laurens
    Voehringer, Harald
    Kats, Ilia
    Saeys, Yvan
    Saka, Sinem K.
    Huber, Wolfgang
    Gerstung, Moritz
    Moore, Josh
    Theis, Fabian J.
    Stegle, Oliver
    NATURE METHODS, 2024, 22 (1) : 58 - 62
  • [40] Recursive Implementation of Gaussian Process Regression for Spatial-Temporal Data Modeling
    Kuang, Ye
    Chen, Tianshi
    Yin, Feng
    Zhong, Renxin
    2019 11TH INTERNATIONAL CONFERENCE ON WIRELESS COMMUNICATIONS AND SIGNAL PROCESSING (WCSP), 2019,