Principles and challenges of modeling temporal and spatial omics data

被引:18
|
作者
Velten, Britta [1 ,2 ,3 ,4 ]
Stegle, Oliver [1 ,2 ,5 ]
机构
[1] German Canc Res Ctr, Div Computat Genom & Syst Genet, Heidelberg, Germany
[2] Wellcome Sanger Inst, Cellular Genet Programme, Cambridge, England
[3] Heidelberg Univ, Ctr Organismal Studies, Heidelberg, Germany
[4] Heidelberg Univ, Interdisciplinary Ctr Sci Comp IWR, Heidelberg, Germany
[5] European Mol Biol Lab, Genome Biol Unit, Heidelberg, Germany
关键词
GENE REGULATORY NETWORKS; COMMON COORDINATE FRAMEWORK; LONGITUDINAL MULTI-OMICS; CELL RNA-SEQ; SINGLE-CELL; BREAST-CANCER; EXPRESSION; TIME; DYNAMICS; INFERENCE;
D O I
10.1038/s41592-023-01992-y
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Studies with temporal or spatial resolution are crucial to understand the molecular dynamics and spatial dependencies underlying a biological process or system. With advances in high-throughput omic technologies, time- and space-resolved molecular measurements at scale are increasingly accessible, providing new opportunities to study the role of timing or structure in a wide range of biological questions. At the same time, analyses of the data being generated in the context of spatiotemporal studies entail new challenges that need to be considered, including the need to account for temporal and spatial dependencies and compare them across different scales, biological samples or conditions. In this Review, we provide an overview of common principles and challenges in the analysis of temporal and spatial omics data. We discuss statistical concepts to model temporal and spatial dependencies and highlight opportunities for adapting existing analysis methods to data with temporal and spatial dimensions.
引用
收藏
页码:1462 / 1474
页数:13
相关论文
共 50 条
  • [21] Data challenges of biomedical researchers in the age of omics
    Garcia-Milian, Rolando
    Hersey, Denise
    Vukmirovic, Milica
    Duprilot, Fanny
    PEERJ, 2018, 6
  • [22] Surfing the Big Data Wave: Omics Data Challenges in Transplantation
    Ba, Rokhaya
    Geffard, Estelle
    Douillard, Venceslas
    Simon, Francoise
    Mesnard, Laurent
    Vince, Nicolas
    Gourraud, Pierre-Antoine
    Limou, Sophie
    TRANSPLANTATION, 2022, 106 (02) : E114 - E125
  • [23] Streamlining spatial omics data analysis with Pysodb
    Lin, Senlin
    Zhao, Fangyuan
    Wu, Zihan
    Yao, Jianhua
    Zhao, Yi
    Yuan, Zhiyuan
    NATURE PROTOCOLS, 2024, 19 (03) : 831 - 895
  • [24] Streamlining spatial omics data analysis with Pysodb
    Senlin Lin
    Fangyuan Zhao
    Zihan Wu
    Jianhua Yao
    Yi Zhao
    Zhiyuan Yuan
    Nature Protocols, 2024, 19 : 831 - 895
  • [25] Modeling spatial temporal binary data using Markov random fields
    Zhu, J
    Huang, HC
    Wu, JP
    JOURNAL OF AGRICULTURAL BIOLOGICAL AND ENVIRONMENTAL STATISTICS, 2005, 10 (02) : 212 - 225
  • [26] Mathematical modeling of the brain: Principles and challenges
    Tenti, Giuseppe
    Sivaloganathan, Siv
    Drake, James M.
    NEUROSURGERY, 2008, 62 (05) : 1146 - 1156
  • [27] Omics big data for crop improvement: Opportunities and challenges
    Naresh Vasupalli
    Javaid Akhter Bhat
    Priyanka Jain
    Tanu Sri
    Md Aminul Islam
    SMShivaraj
    Sunil Kumar Singh
    Rupesh Deshmukh
    Humira Sonah
    Xinchun Lin
    The Crop Journal, 2024, 12 (06) : 1517 - 1532
  • [28] Evolution of PLS for Modeling SAR and omics Data
    Hasegawa, Kiyoshi
    Funatsu, Kimito
    MOLECULAR INFORMATICS, 2012, 31 (11-12) : 766 - 775
  • [29] Data integration in the era of omics: current and future challenges
    Gomez-Cabrero, David
    Abugessaisa, Imad
    Maier, Dieter
    Teschendorff, Andrew
    Merkenschlager, Matthias
    Gisel, Andreas
    Ballestar, Esteban
    Bongcam-Rudloff, Erik
    Conesa, Ana
    Tegner, Jesper
    BMC SYSTEMS BIOLOGY, 2014, 8 : I1
  • [30] Tutorial on survival modeling with applications to omics data
    Zhao, Zhi
    Zobolas, John
    Zucknick, Manuela
    Aittokallio, Tero
    BIOINFORMATICS, 2024, 40 (03)