Principles and challenges of modeling temporal and spatial omics data

被引:18
|
作者
Velten, Britta [1 ,2 ,3 ,4 ]
Stegle, Oliver [1 ,2 ,5 ]
机构
[1] German Canc Res Ctr, Div Computat Genom & Syst Genet, Heidelberg, Germany
[2] Wellcome Sanger Inst, Cellular Genet Programme, Cambridge, England
[3] Heidelberg Univ, Ctr Organismal Studies, Heidelberg, Germany
[4] Heidelberg Univ, Interdisciplinary Ctr Sci Comp IWR, Heidelberg, Germany
[5] European Mol Biol Lab, Genome Biol Unit, Heidelberg, Germany
关键词
GENE REGULATORY NETWORKS; COMMON COORDINATE FRAMEWORK; LONGITUDINAL MULTI-OMICS; CELL RNA-SEQ; SINGLE-CELL; BREAST-CANCER; EXPRESSION; TIME; DYNAMICS; INFERENCE;
D O I
10.1038/s41592-023-01992-y
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Studies with temporal or spatial resolution are crucial to understand the molecular dynamics and spatial dependencies underlying a biological process or system. With advances in high-throughput omic technologies, time- and space-resolved molecular measurements at scale are increasingly accessible, providing new opportunities to study the role of timing or structure in a wide range of biological questions. At the same time, analyses of the data being generated in the context of spatiotemporal studies entail new challenges that need to be considered, including the need to account for temporal and spatial dependencies and compare them across different scales, biological samples or conditions. In this Review, we provide an overview of common principles and challenges in the analysis of temporal and spatial omics data. We discuss statistical concepts to model temporal and spatial dependencies and highlight opportunities for adapting existing analysis methods to data with temporal and spatial dimensions.
引用
收藏
页码:1462 / 1474
页数:13
相关论文
共 50 条
  • [1] Principles and challenges of modeling temporal and spatial omics data
    Britta Velten
    Oliver Stegle
    Nature Methods, 2023, 20 : 1462 - 1474
  • [2] Principles of Modeling Uncertainties in Spatial Data and Spatial Analyses
    Yoo, Eun-Hye Enki
    Aldstadt, Jared
    JOURNAL OF REGIONAL SCIENCE, 2011, 51 (04) : 860 - 861
  • [3] SOTIP is a versatile method for microenvironment modeling with spatial omics data
    Yuan, Zhiyuan
    Li, Yisi
    Shi, Minglei
    Yang, Fan
    Gao, Juntao
    Yao, Jianhua
    Zhang, Michael Q.
    NATURE COMMUNICATIONS, 2022, 13 (01)
  • [4] SOTIP is a versatile method for microenvironment modeling with spatial omics data
    Zhiyuan Yuan
    Yisi Li
    Minglei Shi
    Fan Yang
    Juntao Gao
    Jianhua Yao
    Michael Q. Zhang
    Nature Communications, 13
  • [5] Modeling the Spatial and Temporal Dependence in fMRI Data
    Derado, Gordana
    Bowman, F. DuBois
    Kilts, Clinton D.
    BIOMETRICS, 2010, 66 (03) : 949 - 957
  • [6] Modeling Spatial and Temporal Variation in Motion Data
    Lau, Manfred
    Bar-Joseph, Ziv
    Kuffner, James
    ACM TRANSACTIONS ON GRAPHICS, 2009, 28 (05): : 1 - 10
  • [9] Integrating -omics data into genome-scale metabolic network models: principles and challenges
    Ramon, Charlotte
    Gollub, Mattia G.
    Stelling, Jorg
    SYSTEMS BIOLOGY, 2018, 62 (04): : 563 - 574
  • [10] Challenges in the Integration of Omics and Non-Omics Data
    Lopez de Maturana, Evangelina
    Alonso, Lola
    Alarcon, Pablo
    Adoracion Martin-Antoniano, Isabel
    Pineda, Silvia
    Piorno, Lucas
    Luz Calle, M.
    Malats, Nuria
    GENES, 2019, 10 (03)