Seasonal vertical water vapor distribution at the Mars Phoenix Lander site

被引:2
|
作者
Leung, Cecilia W. S. [1 ]
Tamppari, Leslie K. [1 ]
Kass, David M. [1 ]
Martinez, German [2 ]
Fischer, Erik [3 ]
Smith, Michael D. [4 ]
机构
[1] CALTECH, Jet Prop Lab, Pasadena, CA 91125 USA
[2] Univ Space Res Assoc, Lunar & Planetary Inst, Washington, DC USA
[3] Univ Michigan Ann Arbor, Ann Arbor, MI USA
[4] NASA, Goddard Space Flight Ctr, Greenbelt, MD USA
基金
美国国家航空航天局;
关键词
Mars; Water; atmosphere; Atmospheres; structure; surface; ATMOSPHERIC WATER; HYDROGEN; ESCAPE; SPICAM; CYCLE;
D O I
10.1016/j.icarus.2023.115820
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Using a combination of orbital and surface observations, we constrain the seasonal vertical distribution of water vapor in the planetary boundary layer in the lowest scale-height of the Martian atmosphere at the Phoenix Mars Lander location (68 degrees N, 234 degrees E). Previous observations have shown significant discrepancies regarding the vapor distribution in the boundary layer, drawing conflicting conclusions as to whether water is uniformly mixed below the cloud condensation height, or whether water is mostly confined in the near surface layer. We conclude that the uniformly well-mixed assumption for water vapor up to the cloud condensation level is not always compatible with observational constraints, particularly when peak near-surface water vapor abundances are observed during Ls = 110 degrees -120 degrees. The uniformly well-mixed assumption leads to an over-estimation of the total water vapor column abundances between Ls = 80 degrees -120 degrees, and an under-estimation of the total water vapor column abundances between Ls = 120 degrees -150 degrees. The overestimation of vapor in the column is particularly evident during peak surface water vapor pressures (-Ls = 110 degrees -120 degrees), suggesting a concentration of water vapor at the surface that actively participates in subsurface exchange. Using both TECP and column vapor abundance as constraints for the vertical vapor distribution, the maximum height of the well-mixed vapor layer ranges between -3.5-13.5 km, all of which falls below the cloud condensation height for the corresponding season. From Ls = 120 degrees to 150 degrees, the maximum height of the well-mixed layer stays fairly consistent at a mean height of -7 km. These results are particularly important for providing insight into the seasonal transport of water and the role of regolith-atmospheric exchange.
引用
收藏
页数:15
相关论文
共 50 条
  • [41] The water vapor vertical distribution on mars from millimeter transitions of HDO and H218O
    Encrenaz, T
    Lellouch, E
    Paubert, G
    Gulkis, S
    PLANETARY AND SPACE SCIENCE, 2001, 49 (07) : 731 - 741
  • [42] COLOR AND FEATURE CHANGES AT MARS VIKING LANDER SITE
    LEVIN, GV
    STRAAT, PA
    JOURNAL OF THEORETICAL BIOLOGY, 1978, 75 (03) : 381 - 390
  • [43] Seasonal defrosting of the Phoenix landing site
    Searls, M. L.
    Mellon, M. T.
    Cull, S.
    Hansen, C. J.
    Sizemore, H. G.
    JOURNAL OF GEOPHYSICAL RESEARCH-PLANETS, 2010, 115
  • [44] MARS WATER-VAPOR - SEASONAL DISTRIBUTIONS AND ATMOSPHERIC STRUCTURE IMPLICATIONS
    DAVIES, DW
    FARMER, CB
    LAPORTE, DD
    TRANSACTIONS-AMERICAN GEOPHYSICAL UNION, 1977, 58 (08): : 816 - 816
  • [45] Seasonal ice cycle at the Mars Phoenix landing site: 2. Postlanding CRISM and ground observations
    Cull, Selby
    Arvidson, R. E.
    Morris, R. V.
    Wolff, M.
    Mellon, M. T.
    Lemmon, M. T.
    JOURNAL OF GEOPHYSICAL RESEARCH-PLANETS, 2010, 115
  • [46] Annual Appearance of Hydrogen Chloride on Mars and a Striking Similarity With the Water Vapor Vertical Distribution Observed by TGO/NOMAD
    Aoki, S.
    Daerden, F.
    Viscardy, S.
    Thomas, I. R.
    Erwin, J. T.
    Robert, S.
    Trompet, L.
    Neary, L.
    Villanueva, G. L.
    Liuzzi, G.
    Crismani, M. M. J.
    Clancy, R. T.
    Whiteway, J.
    Schmidt, F.
    Lopez-Valverde, M. A.
    Ristic, B.
    Patel, M. R.
    Bellucci, G.
    Lopez-Moreno, J. J.
    Olsen, K. S.
    Lefevre, F.
    Montmessin, F.
    Trokhimovskiy, A.
    Fedorova, A. A.
    Korablev, O.
    Vandaele, A. C.
    GEOPHYSICAL RESEARCH LETTERS, 2021, 48 (11)
  • [47] NASA Mars 2007 Phoenix Lander Robotic Arm and Icy Soil Acquisition Device
    Bonitz, Robert G.
    Shiraishi, Lori
    Robinson, Matthew
    Arvidson, Raymond E.
    Chu, P. C.
    Wilson, J. J.
    Davis, K. R.
    Paulsen, G.
    Kusack, A. G.
    Archer, Doug
    Smith, Peter
    JOURNAL OF GEOPHYSICAL RESEARCH-PLANETS, 2008, 113
  • [48] Phoenix lander wins - Lockheed Martin spacecraft has been resurrected for a Mars touchdown
    Covault, C
    AVIATION WEEK & SPACE TECHNOLOGY, 2003, 159 (06): : 35 - 35
  • [49] Detection of Perchlorate and the Soluble Chemistry of Martian Soil at the Phoenix Lander Site
    Hecht, M. H.
    Kounaves, S. P.
    Quinn, R. C.
    West, S. J.
    Young, S. M. M.
    Ming, D. W.
    Catling, D. C.
    Clark, B. C.
    Boynton, W. V.
    Hoffman, J.
    DeFlores, L. P.
    Gospodinova, K.
    Kapit, J.
    Smith, P. H.
    SCIENCE, 2009, 325 (5936) : 64 - 67
  • [50] Water vapor on mars
    Abbot, CG
    SCIENCE, 1910, 31 (01) : 987 - 988