Seasonal vertical water vapor distribution at the Mars Phoenix Lander site

被引:2
|
作者
Leung, Cecilia W. S. [1 ]
Tamppari, Leslie K. [1 ]
Kass, David M. [1 ]
Martinez, German [2 ]
Fischer, Erik [3 ]
Smith, Michael D. [4 ]
机构
[1] CALTECH, Jet Prop Lab, Pasadena, CA 91125 USA
[2] Univ Space Res Assoc, Lunar & Planetary Inst, Washington, DC USA
[3] Univ Michigan Ann Arbor, Ann Arbor, MI USA
[4] NASA, Goddard Space Flight Ctr, Greenbelt, MD USA
基金
美国国家航空航天局;
关键词
Mars; Water; atmosphere; Atmospheres; structure; surface; ATMOSPHERIC WATER; HYDROGEN; ESCAPE; SPICAM; CYCLE;
D O I
10.1016/j.icarus.2023.115820
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Using a combination of orbital and surface observations, we constrain the seasonal vertical distribution of water vapor in the planetary boundary layer in the lowest scale-height of the Martian atmosphere at the Phoenix Mars Lander location (68 degrees N, 234 degrees E). Previous observations have shown significant discrepancies regarding the vapor distribution in the boundary layer, drawing conflicting conclusions as to whether water is uniformly mixed below the cloud condensation height, or whether water is mostly confined in the near surface layer. We conclude that the uniformly well-mixed assumption for water vapor up to the cloud condensation level is not always compatible with observational constraints, particularly when peak near-surface water vapor abundances are observed during Ls = 110 degrees -120 degrees. The uniformly well-mixed assumption leads to an over-estimation of the total water vapor column abundances between Ls = 80 degrees -120 degrees, and an under-estimation of the total water vapor column abundances between Ls = 120 degrees -150 degrees. The overestimation of vapor in the column is particularly evident during peak surface water vapor pressures (-Ls = 110 degrees -120 degrees), suggesting a concentration of water vapor at the surface that actively participates in subsurface exchange. Using both TECP and column vapor abundance as constraints for the vertical vapor distribution, the maximum height of the well-mixed vapor layer ranges between -3.5-13.5 km, all of which falls below the cloud condensation height for the corresponding season. From Ls = 120 degrees to 150 degrees, the maximum height of the well-mixed layer stays fairly consistent at a mean height of -7 km. These results are particularly important for providing insight into the seasonal transport of water and the role of regolith-atmospheric exchange.
引用
收藏
页数:15
相关论文
共 50 条
  • [21] Constraints on water vapor vertical distribution at the Phoenix landing site during summer from MGS TES day and night observations
    Pankine, Alexey A.
    Tamppari, Leslie K.
    ICARUS, 2015, 252 : 107 - 120
  • [22] A Program to Facilitate Adaptation to living on a Mars Day: The Phoenix Mars Lander Mission
    Frey, M. A.
    AVIATION SPACE AND ENVIRONMENTAL MEDICINE, 2013, 84 (11): : 1216 - 1217
  • [23] Entry, Descent, and Landing Operations Analysis for the Mars Phoenix Lander
    Prince, Jill L.
    Desai, Prasun N.
    Queen, Eric M.
    Grove, Myron R.
    JOURNAL OF SPACECRAFT AND ROCKETS, 2011, 48 (05) : 778 - 783
  • [24] RECONSTRUCTING THE ENTRY, DESCENT, AND LANDING (EDL) OF THE PHOENIX MARS LANDER
    Haack, Brad R.
    Johnson, Mark A.
    Pierre, Jay A. St
    GUIDANCE AND CONTROL 2009, 2009, 133 : 97 - +
  • [25] PLANETARY SCIENCE Phoenix Lander Revealing a Younger, Livelier Mars
    Kerr, Richard A.
    SCIENCE, 2010, 329 (5997) : 1267 - 1269
  • [26] Results from the Mars Phoenix Lander Robotic Arm experiment
    Arvidson, R. E.
    Bonitz, R. G.
    Robinson, M. L.
    Carsten, J. L.
    Volpe, R. A.
    Trebi-Ollennu, A.
    Mellon, M. T.
    Chu, P. C.
    Davis, K. R.
    Wilson, J. J.
    Shaw, A. S.
    Greenberger, R. N.
    Siebach, K. L.
    Stein, T. C.
    Cull, S. C.
    Goetz, W.
    Morris, R. V.
    Ming, D. W.
    Keller, H. U.
    Lemmon, M. T.
    Sizemore, H. G.
    Mehta, M.
    JOURNAL OF GEOPHYSICAL RESEARCH-PLANETS, 2009, 114
  • [27] Qualification Of LEDs For Cameras On NASA's Phoenix Mars Lander
    Reynolds, Robert O.
    Tanner, Roger D.
    Albanna, Sarmad
    NANOPHOTONICS AND MACROPHOTONICS FOR SPACE ENVIRONMENTS II, 2008, 7095
  • [28] Entry, descent, and landing communications for the 2007 Phoenix Mars Lander
    Kornfeld, Richard P.
    Garcia, Mark D.
    Craig, Lynn E.
    Butman, Stan
    Signori, Gina M.
    JOURNAL OF SPACECRAFT AND ROCKETS, 2008, 45 (03) : 534 - 547
  • [29] Reconstruction of Entry, Descent and Landing Communications for the Phoenix Mars Lander
    Kornfeld, Richard P.
    Bruvold, Kristoffer N.
    Morabito, David D.
    Craig, Lynn E.
    Asmar, Sami W.
    Ilott, Peter A.
    JOURNAL OF SPACECRAFT AND ROCKETS, 2011, 48 (05) : 822 - 835
  • [30] Learning to Live on a Mars Day: Fatigue Countermeasures during the Phoenix Mars Lander Mission
    Barger, Laura K.
    Sullivan, Jason P.
    Vincent, Andrea S.
    Fiedler, Edna R.
    McKenna, Laurence M.
    Flynn-Evans, Erin E.
    Gilliland, Kirby
    Sipes, Walter E.
    Smith, Peter H.
    Brainard, George C.
    Lockley, Steven W.
    SLEEP, 2012, 35 (10) : 1423 - 1435