Seasonal vertical water vapor distribution at the Mars Phoenix Lander site

被引:2
|
作者
Leung, Cecilia W. S. [1 ]
Tamppari, Leslie K. [1 ]
Kass, David M. [1 ]
Martinez, German [2 ]
Fischer, Erik [3 ]
Smith, Michael D. [4 ]
机构
[1] CALTECH, Jet Prop Lab, Pasadena, CA 91125 USA
[2] Univ Space Res Assoc, Lunar & Planetary Inst, Washington, DC USA
[3] Univ Michigan Ann Arbor, Ann Arbor, MI USA
[4] NASA, Goddard Space Flight Ctr, Greenbelt, MD USA
基金
美国国家航空航天局;
关键词
Mars; Water; atmosphere; Atmospheres; structure; surface; ATMOSPHERIC WATER; HYDROGEN; ESCAPE; SPICAM; CYCLE;
D O I
10.1016/j.icarus.2023.115820
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Using a combination of orbital and surface observations, we constrain the seasonal vertical distribution of water vapor in the planetary boundary layer in the lowest scale-height of the Martian atmosphere at the Phoenix Mars Lander location (68 degrees N, 234 degrees E). Previous observations have shown significant discrepancies regarding the vapor distribution in the boundary layer, drawing conflicting conclusions as to whether water is uniformly mixed below the cloud condensation height, or whether water is mostly confined in the near surface layer. We conclude that the uniformly well-mixed assumption for water vapor up to the cloud condensation level is not always compatible with observational constraints, particularly when peak near-surface water vapor abundances are observed during Ls = 110 degrees -120 degrees. The uniformly well-mixed assumption leads to an over-estimation of the total water vapor column abundances between Ls = 80 degrees -120 degrees, and an under-estimation of the total water vapor column abundances between Ls = 120 degrees -150 degrees. The overestimation of vapor in the column is particularly evident during peak surface water vapor pressures (-Ls = 110 degrees -120 degrees), suggesting a concentration of water vapor at the surface that actively participates in subsurface exchange. Using both TECP and column vapor abundance as constraints for the vertical vapor distribution, the maximum height of the well-mixed vapor layer ranges between -3.5-13.5 km, all of which falls below the cloud condensation height for the corresponding season. From Ls = 120 degrees to 150 degrees, the maximum height of the well-mixed layer stays fairly consistent at a mean height of -7 km. These results are particularly important for providing insight into the seasonal transport of water and the role of regolith-atmospheric exchange.
引用
收藏
页数:15
相关论文
共 50 条
  • [31] Seasonal and interannual variability of the water vapor vertical distribution in the Martian lower atmosphere
    Pankine, Alexey A.
    McConnochie, Timothy H.
    Smith, Michael D.
    ICARUS, 2025, 426
  • [32] Humidity observations and column simulations for a warm period at the Mars Phoenix lander site: Constraining the adsorptive properties of regolith
    Savijarvi, H., I
    Martinez, G. M.
    Fischer, E.
    Renno, N. O.
    Tamppari, L. K.
    Zent, A.
    Harri, A-M
    ICARUS, 2020, 343
  • [33] The MECA Wet Chemistry Laboratory on the 2007 Phoenix Mars Scout Lander
    Kounaves, Samuel P.
    Hecht, Michael H.
    West, Steven J.
    Morookian, John-Michael
    Young, Suzanne M. M.
    Quinn, Richard
    Grunthaner, Paula
    Wen, Xiaowen
    Weilert, Mark
    Cable, Casey A.
    Fisher, Anita
    Gospodinova, Kalina
    Kapit, Jason
    Stroble, Shannon
    Hsu, Po-Chang
    Clark, Benton C.
    Ming, Douglas W.
    Smith, Peter H.
    JOURNAL OF GEOPHYSICAL RESEARCH-PLANETS, 2009, 114
  • [34] Concentrated perchlorate at the Mars Phoenix landing site: Evidence for thin film liquid water on Mars
    Cull, Selby C.
    Arvidson, Raymond E.
    Catalano, Jeffrey G.
    Ming, Douglas W.
    Morris, Richard V.
    Mellon, Michael T.
    Lemmon, Mark
    GEOPHYSICAL RESEARCH LETTERS, 2010, 37
  • [35] In-Situ Robotic Arm Operations Phoenix Mars Lander and Mars Exploration Rover Missions
    Trebi-Ollennu, Ashitey
    Volpe, Richard
    Bonitz, Robert G.
    Robinson, Matthew L.
    Carsten, Joseph
    IEEE ROBOTICS & AUTOMATION MAGAZINE, 2009, 16 (04) : 34 - 43
  • [36] WATER-VAPOR IN MARS ARCTIC - SEASONAL AND SPATIAL VARIABILITY
    DAVIES, DW
    JOURNAL OF GEOPHYSICAL RESEARCH, 1982, 87 (NB12): : 253 - 263
  • [37] Microscopy, Electrochemistry, and Conductivity Analyzer (MECA) payload on Mars '07 Phoenix Lander
    Shirbacheh, Mike
    Hecht, Michael
    Bell, Julie L.
    Mogensen, Claus
    2005 IEEE Aerospace Conference, Vols 1-4, 2005, : 279 - 291
  • [38] Dielectric signatures of adsorbed and salty liquid water at the Phoenix landing site, Mars
    Stillman, David E.
    Grimm, Robert E.
    JOURNAL OF GEOPHYSICAL RESEARCH-PLANETS, 2011, 116
  • [39] Geomorphic and geologic settings of the Phoenix Lander mission landing site
    Heet, T. L.
    Arvidson, R. E.
    Cull, S. C.
    Mellon, M. T.
    Seelos, K. D.
    JOURNAL OF GEOPHYSICAL RESEARCH-PLANETS, 2009, 114
  • [40] Introduction: Mars Phoenix Lander: A 10-Year Journey to the Red Planet
    Desai, Prasun
    JOURNAL OF SPACECRAFT AND ROCKETS, 2011, 48 (05) : 705 - 705