Bayesian estimation of real-time epidemic growth rates using Gaussian processes: local dynamics of SARS-CoV-2 in England

被引:3
|
作者
Guzman-Rincon, Laura M. [1 ,2 ,3 ,4 ]
Hill, Edward M. [1 ,2 ,3 ]
Dyson, Louise [1 ,2 ,3 ]
Tildesley, Michael J. [1 ,2 ,3 ]
Keeling, Matt J. [1 ,2 ,3 ]
机构
[1] Univ Warwick, Zeeman Inst Syst Biol & Infect Dis Epidemiol Res, Sch Life Sci, Coventry, England
[2] Univ Warwick, Math Inst, Coventry, England
[3] Joint Univ Pandem & Epidemiol Res, Bristol, England
[4] Univ Warwick, Math Inst, Coventry CV4 7AL, England
基金
英国生物技术与生命科学研究理事会; 英国工程与自然科学研究理事会;
关键词
Bayesian hierarchical modelling; epidemiological trends; Gaussian processes; growth rate estimation; public-health tools; spatial heterogeneity;
D O I
10.1093/jrsssc/qlad056
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Quantitative assessments of the recent state of an epidemic and short-term projections for the near future are key public-health tools that have substantial policy impacts, helping to determine if existing control measures are sufficient or need to be strengthened. Key to these quantitative assessments is the ability to rapidly and robustly measure the speed with which an epidemic is growing or decaying. Frequently, epidemiological trends are addressed in terms of the (time-varying) reproductive number R. Here, we take a more parsimonious approach and calculate the exponential growth rate, r, using a Bayesian hierarchical model to fit a Gaussian process to the epidemiological data. We show how the method can be employed when only case data from positive tests are available, and the improvement gained by including the total number of tests as a measure of the heterogeneous testing effort. Although the methods are generic, we apply them to SARS-CoV-2 cases and testing in England, making use of the available high-resolution spatio-temporal data to determine long-term patterns of national growth, highlight regional growth, and spatial heterogeneity.
引用
收藏
页码:1413 / 1434
页数:22
相关论文
共 50 条
  • [41] Assessment of Real-Time RT-PCR Kits for SARS-CoV-2 Detection
    Okamaoto, Kiyoko
    Shirato, Kazuya
    Nao, Naganori
    Saito, Shinji
    Kageyama, Tsutomu
    Hasegawa, Hideki
    Suzuki, Tadaki
    Matsuyama, Shutoku
    Takeda, Makoto
    JAPANESE JOURNAL OF INFECTIOUS DISEASES, 2020, 73 (05) : 366 - 368
  • [42] SARS-CoV-2 Africa dashboard for real-time COVID-19 information
    Xavier, Joicymara S.
    Moir, Monika
    Tegally, Houriiyah
    Sitharam, Nikita
    Karim, Wasim Abdool
    San, James E.
    Linhares, Joana
    Wilkinson, Eduan
    Ascher, David B.
    Baxter, Cheryl
    Pires, Douglas E., V
    de Oliveira, Tulio
    NATURE MICROBIOLOGY, 2023, 8 (01) : 1 - 4
  • [43] Authors' response: SARS-CoV-2 detection by real-time RT-PCR
    Corman, Victor M.
    Drosten, Christian
    EUROSURVEILLANCE, 2020, 25 (21): : 35 - 35
  • [44] Real-time estimation of immunological responses against emerging SARS-CoV-2 variants in the UK: a mathematical modelling study
    Russell, Timothy W.
    Townsley, Hermaleigh
    Hellewell, Joel
    Gahir, Joshua
    Shawe-Taylor, Marianne
    Greenwood, David
    Hodgson, David
    Hobbs, Agnieszka
    Dowgier, Giulia
    Penn, Rebecca
    Sanderson, Theo
    Stevenson-Leggett, Phoebe
    Bazire, James
    Harvey, Ruth
    Fowler, Ashley S.
    Miah, Murad
    Smith, Callie
    Miranda, Mauro
    Bawumia, Philip
    Mears, Harriet, V
    Adams, Lorin
    Hatipoglu, Emine
    O'Reilly, Nicola
    Warchal, Scott
    Ambrose, Karen
    Strange, Amy
    Kelly, Gavin
    Kjar, Svend
    Papineni, Padmasayee
    Corrah, Tumena
    Gilson, Richard
    Libri, Vincenzo
    Kassiotis, George
    Gamblin, Steve
    Lewis, Nicola S.
    Williams, Bryan
    Swanton, Charles
    Gandhi, Sonia
    Beale, Rupert
    Wu, Mary Y.
    Bauer, David L., V
    Carr, Edward J.
    Wall, Emma C.
    Kucharski, Adam
    LANCET INFECTIOUS DISEASES, 2025, 25 (01): : 80 - 93
  • [45] STANDARD M10 SARS-CoV-2 Assay for Rapid Detection of SARS-CoV-2: Comparison of Four Real-Time PCR Assays
    Jeong, Seri
    Lee, Nuri
    Lee, Su Kyung
    Cho, Eun-Jung
    Hyun, Jungwon
    Park, Min-Jeong
    Song, Wonkeun
    Kim, Hyun Soo
    DIAGNOSTICS, 2022, 12 (08)
  • [46] Real-Time Information Processing of Environmental Sensor Network Data Using Bayesian Gaussian Processes
    Osborne, Michael A.
    Roberts, Stephen J.
    Rogers, Alex
    Jennings, Nicholas R.
    ACM TRANSACTIONS ON SENSOR NETWORKS, 2012, 9 (01)
  • [47] Effectiveness of mRNA COVID-19 vaccines against symptomatic SARS-CoV-2 infections during the SARS-CoV-2 Omicron BA.1 and BA.2 epidemic in Japan: vaccine effectiveness real-time surveillance for SARS-CoV-2 (VERSUS)
    Maeda, Haruka
    Saito, Nobuo
    Igarashi, Ataru
    Ishida, Masayuki
    Terada, Mayumi
    Ito, Takayasu
    Ikeda, Hideko
    Kamura, Hiroshi
    Motohashi, Iori
    Kimura, Yuya
    Komino, Masaru
    Arai, Hiromi
    Kuwamitsu, Osamu
    Akuzawa, Nobuhiro
    Sando, Eiichiro
    Morikawa, Toru
    Imura, Haruki
    Inoue, Hiroki
    Hayakawa, Tomoichiro
    Teshigahara, Osamu
    Ohara, Yasuji
    Suzuki, Motoi
    Morimoto, Konosuke
    EXPERT REVIEW OF VACCINES, 2023, 22 (01) : 288 - 298
  • [48] Detection of SARS-CoV-2 by using real-time PCR nasopharyngeal swabs in suspected patients and their clinical medication
    Mazhar M.W.
    Raza A.
    shaheen T.
    Zubair M.
    Mahmood J.
    Tahir H.
    Saif S.
    Mazhar F.
    Sensors International, 2022, 3
  • [49] DirectDetect SARS-CoV-2 Direct Real-Time RT-PCR Study Using Patient Samples
    Naranbat, Dulguunnaran
    Schneider, Lindsay
    Kantor, Rami
    Beckwith, Curt G.
    Bazerman, Lauri
    Gillani, Fizza
    Sahu, Sujata
    Rapoza, Kim
    Sam, Soya
    Novitsky, Vlad
    Shin, Jimin
    Hipolito, Evelyn
    Diaz, Isabella
    Carnevale, Daniella
    Tripathi, Anubhav
    ACS OMEGA, 2022, 7 (06): : 4945 - 4955
  • [50] Assessment of thermal and temporal stability of SARS-CoV-2 samples using real-time qRT-PCR
    Rohit Kumar Swain
    S. S. Mohanty
    Mahendra Thakor
    A. K. Sharma
    Molecular Biology Reports, 2023, 50 : 8565 - 8573