Bayesian estimation of real-time epidemic growth rates using Gaussian processes: local dynamics of SARS-CoV-2 in England

被引:3
|
作者
Guzman-Rincon, Laura M. [1 ,2 ,3 ,4 ]
Hill, Edward M. [1 ,2 ,3 ]
Dyson, Louise [1 ,2 ,3 ]
Tildesley, Michael J. [1 ,2 ,3 ]
Keeling, Matt J. [1 ,2 ,3 ]
机构
[1] Univ Warwick, Zeeman Inst Syst Biol & Infect Dis Epidemiol Res, Sch Life Sci, Coventry, England
[2] Univ Warwick, Math Inst, Coventry, England
[3] Joint Univ Pandem & Epidemiol Res, Bristol, England
[4] Univ Warwick, Math Inst, Coventry CV4 7AL, England
基金
英国生物技术与生命科学研究理事会; 英国工程与自然科学研究理事会;
关键词
Bayesian hierarchical modelling; epidemiological trends; Gaussian processes; growth rate estimation; public-health tools; spatial heterogeneity;
D O I
10.1093/jrsssc/qlad056
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Quantitative assessments of the recent state of an epidemic and short-term projections for the near future are key public-health tools that have substantial policy impacts, helping to determine if existing control measures are sufficient or need to be strengthened. Key to these quantitative assessments is the ability to rapidly and robustly measure the speed with which an epidemic is growing or decaying. Frequently, epidemiological trends are addressed in terms of the (time-varying) reproductive number R. Here, we take a more parsimonious approach and calculate the exponential growth rate, r, using a Bayesian hierarchical model to fit a Gaussian process to the epidemiological data. We show how the method can be employed when only case data from positive tests are available, and the improvement gained by including the total number of tests as a measure of the heterogeneous testing effort. Although the methods are generic, we apply them to SARS-CoV-2 cases and testing in England, making use of the available high-resolution spatio-temporal data to determine long-term patterns of national growth, highlight regional growth, and spatial heterogeneity.
引用
收藏
页码:1413 / 1434
页数:22
相关论文
共 50 条
  • [31] Rapid Serological Assays and SARS-CoV-2 Real-Time Polymerase Chain Reaction Assays for the Detection of SARS-CoV-2: Comparative Study
    Paradiso, Angelo Virgilio
    De Summa, Simona
    Loconsole, Daniela
    Procacci, Vito
    Sallustio, Anna
    Centrone, Francesca
    Silvestris, Nicola
    Cafagna, Vito
    De Palma, Giuseppe
    Tufaro, Antonio
    Garrisi, Vito Michele
    Chironna, Maria
    JOURNAL OF MEDICAL INTERNET RESEARCH, 2020, 22 (10)
  • [32] Different interpretations of inconclusive results of SARS-CoV-2 real-time RT PCR
    Jeon, You La
    Lee, Sang Gon
    Lee, Eun Hee
    Song, Sungwook
    Go, Un Young
    Chun, Ga-Young
    DIAGNOSTIC MICROBIOLOGY AND INFECTIOUS DISEASE, 2023, 106 (02)
  • [33] Real-time PCR-based SARS-CoV-2 detection in Canadian laboratories
    LeBlanc, Jason J.
    Gubbay, Jonathan B.
    Li, Yan
    Needle, Robert
    Arneson, Sandra Radons
    Marcino, Dionne
    Charest, Hugues
    Desnoyers, Guillaume
    Dust, Kerry
    Fattouh, Ramzi
    Garceau, Richard
    German, Gregory
    Hatchette, Todd F.
    Kozak, Robert A.
    Krajden, Mel
    Kuschak, Theodore
    Lang, Amanda L. S.
    Levett, Paul
    Mazzulli, Tony
    McDonald, Ryan
    Mubareka, Samira
    Prystajecky, Natalie
    Rutherford, Candy
    Smieja, Marek
    Yu, Yang
    Zahariadis, George
    Zelyas, Nathan
    Bastien, Nathalie
    JOURNAL OF CLINICAL VIROLOGY, 2020, 128
  • [34] Real-time PCR detects 4 rapid transmission variants of SARS-CoV-2
    Pham, Van H.
    Vo, Chien D.
    Nguyen, Ha M.
    Pham, Binh T.
    Le, Sa H.
    Tran, Duy K.
    Nguyen, Quoc V.
    Tran, Viet Q.
    Pham, Huong T.
    Pham, Son T.
    Nguyen, Nam H. D.
    INTERNATIONAL JOURNAL OF ANTIMICROBIAL AGENTS, 2021, 58 : 39 - 40
  • [35] SARS-CoV-2 Africa dashboard for real-time COVID-19 information
    Joicymara S. Xavier
    Monika Moir
    Houriiyah Tegally
    Nikita Sitharam
    Wasim Abdool Karim
    James E. San
    Joana Linhares
    Eduan Wilkinson
    David B. Ascher
    Cheryl Baxter
    Douglas E. V. Pires
    Tulio de Oliveira
    Nature Microbiology, 2023, 8 : 1 - 4
  • [36] Primer design for quantitative real-time PCR for the emerging Coronavirus SARS-CoV-2
    Li, Dandan
    Zhang, Jiawei
    Li, Jinming
    THERANOSTICS, 2020, 10 (16): : 7150 - 7162
  • [37] Specificity of SARS-CoV-2 Real-Time PCR Improved by Deep Learning Analysis
    Alouani, David J.
    Rajapaksha, Roshani R. P.
    Jani, Mehul
    Rhoads, Daniel D.
    Sadri, Navid
    JOURNAL OF CLINICAL MICROBIOLOGY, 2021, 59 (06)
  • [38] Real-time allelic assays of SARS-CoV-2 variants to enhance sewage surveillance
    Xu, Xiaoqing
    Deng, Yu
    Ding, Jiahui
    Zheng, Xiawan
    Li, Shuxian
    Liu, Lei
    Chui, Ho-kwong
    Poon, Leo L. M.
    Zhang, Tong
    WATER RESEARCH, 2022, 220
  • [39] Letter to the editor: SARS-CoV-2 detection by real-time RT-PCR
    Pillonel, Trestan
    Scherz, Valentin
    Jaton, Katia
    Greub, Gilbert
    Bertelli, Claire
    EUROSURVEILLANCE, 2020, 25 (21): : 33 - 34
  • [40] The SARS-CoV-2 Pandemic: Real-Time Training and Service for Preventive Medicine Residents
    Miller, Lisa A.
    JOURNAL OF PUBLIC HEALTH MANAGEMENT AND PRACTICE, 2021, 27 : S123 - S128