Bayesian estimation of real-time epidemic growth rates using Gaussian processes: local dynamics of SARS-CoV-2 in England

被引:3
|
作者
Guzman-Rincon, Laura M. [1 ,2 ,3 ,4 ]
Hill, Edward M. [1 ,2 ,3 ]
Dyson, Louise [1 ,2 ,3 ]
Tildesley, Michael J. [1 ,2 ,3 ]
Keeling, Matt J. [1 ,2 ,3 ]
机构
[1] Univ Warwick, Zeeman Inst Syst Biol & Infect Dis Epidemiol Res, Sch Life Sci, Coventry, England
[2] Univ Warwick, Math Inst, Coventry, England
[3] Joint Univ Pandem & Epidemiol Res, Bristol, England
[4] Univ Warwick, Math Inst, Coventry CV4 7AL, England
基金
英国生物技术与生命科学研究理事会; 英国工程与自然科学研究理事会;
关键词
Bayesian hierarchical modelling; epidemiological trends; Gaussian processes; growth rate estimation; public-health tools; spatial heterogeneity;
D O I
10.1093/jrsssc/qlad056
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Quantitative assessments of the recent state of an epidemic and short-term projections for the near future are key public-health tools that have substantial policy impacts, helping to determine if existing control measures are sufficient or need to be strengthened. Key to these quantitative assessments is the ability to rapidly and robustly measure the speed with which an epidemic is growing or decaying. Frequently, epidemiological trends are addressed in terms of the (time-varying) reproductive number R. Here, we take a more parsimonious approach and calculate the exponential growth rate, r, using a Bayesian hierarchical model to fit a Gaussian process to the epidemiological data. We show how the method can be employed when only case data from positive tests are available, and the improvement gained by including the total number of tests as a measure of the heterogeneous testing effort. Although the methods are generic, we apply them to SARS-CoV-2 cases and testing in England, making use of the available high-resolution spatio-temporal data to determine long-term patterns of national growth, highlight regional growth, and spatial heterogeneity.
引用
收藏
页码:1413 / 1434
页数:22
相关论文
共 50 条
  • [11] A real-time competition between humans and SARS-CoV-2
    Ranganath, H.A.
    Current Science, 2023, 124 (01): : 10 - 12
  • [12] Dynamics of a national Omicron SARS-CoV-2 epidemic during January 2022 in England
    Paul Elliott
    Oliver Eales
    Barbara Bodinier
    David Tang
    Haowei Wang
    Jakob Jonnerby
    David Haw
    Joshua Elliott
    Matthew Whitaker
    Caroline E. Walters
    Christina Atchison
    Peter J. Diggle
    Andrew J. Page
    Alexander J. Trotter
    Deborah Ashby
    Wendy Barclay
    Graham Taylor
    Helen Ward
    Ara Darzi
    Graham S. Cooke
    Marc Chadeau-Hyam
    Christl A. Donnelly
    Nature Communications, 13
  • [13] Dynamics of a national Omicron SARS-CoV-2 epidemic during January 2022 in England
    Elliott, Paul
    Eales, Oliver
    Bodinier, Barbara
    Tang, David
    Wang, Haowei
    Jonnerby, Jakob
    Haw, David
    Elliott, Joshua
    Whitaker, Matthew
    Walters, Caroline E.
    Atchison, Christina
    Diggle, Peter J.
    Page, Andrew J.
    Trotter, Alexander J.
    Ashby, Deborah
    Barclay, Wendy
    Taylor, Graham
    Ward, Helen
    Darzi, Ara
    Cooke, Graham S.
    Chadeau-Hyam, Marc
    Donnelly, Christl A.
    NATURE COMMUNICATIONS, 2022, 13 (01)
  • [14] Real-time environmental surveillance of SARS-CoV-2 aerosols
    Puthussery, Joseph V. V.
    Ghumra, Dishit P. P.
    McBrearty, Kevin R. R.
    Doherty, Brookelyn M. M.
    Sumlin, Benjamin J. J.
    Sarabandi, Amirhossein
    Mandal, Anushka Garg
    Shetty, Nishit J. J.
    Gardiner, Woodrow D. D.
    Magrecki, Jordan P. P.
    Brody, David L. L.
    Esparza, Thomas J. J.
    Bricker, Traci L. L.
    Boon, Adrianus C. M.
    Yuede, Carla M. M.
    Cirrito, John R. R.
    Chakrabarty, Rajan K. K.
    NATURE COMMUNICATIONS, 2023, 14 (01)
  • [15] Real-time estimation of the effective reproduction number of SARS-CoV-2 in Aotearoa New Zealand
    Binny, Rachelle N.
    Lustig, Audrey
    Hendy, Shaun C.
    Maclaren, Oliver J.
    Ridings, Kannan M.
    Vattiato, Giorgia
    Plank, Michael J.
    PEERJ, 2022, 10
  • [16] Real-time estimates of the emergence and dynamics of SARS-CoV-2 variants of concern: A modeling approach
    Gozzi, Nicolo
    Chinazzi, Matteo
    Davis, Jessica T.
    Mu, Kunpeng
    Piontti, Ana Pastore y
    Ajelli, Marco
    Vespignani, Alessandro
    Perra, Nicola
    EPIDEMICS, 2024, 49
  • [17] CoViT: Real-time phylogenetics for the SARS-CoV-2 pandemic using Vision Transformers
    Jahshan, Zuher
    Alkan, Can
    Yavits, Leonid
    arXiv, 2022,
  • [18] AutoVEM: An automated tool to real-time monitor epidemic trends and key mutations in SARS-CoV-2 evolution
    Xi, Binbin
    Jiang, Dawei
    Li, Shuhua
    Lon, Jerome R.
    Bai, Yunmeng
    Lin, Shudai
    Hu, Meiling
    Meng, Yuhuan
    Qu, Yimo
    Huang, Yuting
    Liu, Wei
    Huang, Lizhen
    Du, Hongli
    COMPUTATIONAL AND STRUCTURAL BIOTECHNOLOGY JOURNAL, 2021, 19 : 1976 - 1985
  • [19] Evaluation of real-time NASBA assay for the detection of SARS-CoV-2 compared with real-time PCR
    Kia, Vahid
    Tafti, Ali
    Paryan, Mahdi
    Mohammadi-Yeganeh, Samira
    IRISH JOURNAL OF MEDICAL SCIENCE, 2023, 192 (02) : 723 - 729
  • [20] Evaluation of real-time NASBA assay for the detection of SARS-CoV-2 compared with real-time PCR
    Vahid Kia
    Ali Tafti
    Mahdi Paryan
    Samira Mohammadi-Yeganeh
    Irish Journal of Medical Science (1971 -), 2023, 192 : 723 - 729