Rapid, economical diagnostic classification of ATRT molecular subgroup using NanoString nCounter platform

被引:0
|
作者
Ho, Ben [1 ,3 ,4 ]
Arnoldo, Anthony [5 ]
Zhong, Yvonne [5 ]
Lu, Mei [1 ,3 ]
Torchia, Jonathon [6 ]
Yao, Fupan [1 ,3 ,7 ]
Hawkins, Cynthia [1 ,3 ,5 ]
Huang, Annie [2 ,4 ,7 ,8 ]
机构
[1] Hosp Sick Children, Div Cell Biol, Toronto, ON, Canada
[2] Hosp Sick Children, Div Hematol & Oncol, Toronto, ON, Canada
[3] Hosp Sick Children, Arthur & Sonia Labatt Brain Tumor Res Ctr, Toronto, ON, Canada
[4] Univ Toronto, Fac Med, Dept Lab Med & Pathobiol, Toronto, ON, Canada
[5] Hosp Sick Children, Div Pathol, Toronto, ON, Canada
[6] Cantata Bio LLC, Scotts Valley, CA USA
[7] Univ Toronto, Fac Med, Dept Med Biophys, Toronto, ON, Canada
[8] Hosp Sick Children, Div Hematol & Oncol, 555 Univ Ave, Toronto, ON, Canada
关键词
CNS neoplasm; gene expression profiling; molecular typing; rhabdoid tumor; tumor biomarkers; ATYPICAL TERATOID/RHABDOID TUMORS; CHILDREN;
D O I
10.1093/noajnl/vdae004
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Background Despite genomic simplicity, recent studies have reported at least 3 major atypical teratoid rhabdoid tumor (ATRT) subgroups with distinct molecular and clinical features. Reliable ATRT subgrouping in clinical settings remains challenging due to a lack of suitable biological markers, sample rarity, and the relatively high cost of conventional subgrouping methods. This study aimed to develop a reliable ATRT molecular stratification method to implement in clinical settings.Methods We have developed an ATRT subgroup predictor assay using a custom genes panel for the NanoString nCounter System and a flexible machine learning classifier package. Seventy-one ATRT primary tumors with matching gene expression array and NanoString data were used to construct a multi-algorithms ensemble classifier. Additional validation was performed using an independent gene expression array against the independently generated dataset. We also analyzed 11 extra-cranial rhabdoid tumors with our classifier and compared our approach against DNA methylation classification to evaluate the result consistency with existing methods.Results We have demonstrated that our novel ensemble classifier has an overall average of 93.6% accuracy in the validation dataset, and a striking 98.9% accuracy was achieved with the high-prediction score samples. Using our classifier, all analyzed extra-cranial rhabdoid tumors are classified as MYC subgroups. Compared with the DNA methylation classification, the results show high agreement, with 84.5% concordance and up to 95.8% concordance for high-confidence predictions.Conclusions Here we present a rapid, cost-effective, and accurate ATRT subgrouping assay applicable for clinical use.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] ENABLING RAPID CLASSIFICATION OF ATRT WITH NANOSTRING NCOUNTER PLATFORM
    Ho, Ben
    Arnoldo, Anthony
    Zhong, Yvonne
    Lu, Mei
    Torchia, Jonathon
    Yao, Fupan
    Hawkins, Cynthia
    Huang, Annie
    NEURO-ONCOLOGY, 2020, 22 : 282 - 282
  • [2] Derivation of a parsimonious Tuberculosis gene signature using the digital NanoString nCounter platform
    Kaipilyawar, Vaishnavi
    Zhao, Yue
    Wang, Xutao
    Joseph, Noyal M.
    Babu, Senbagavalli Prakash
    Hochberg, Natasha S.
    Sarkar, Sonali
    Horsburgh, Charles
    Ellner, Jerrold J.
    Johnson, William Evan
    Salgame, Padmini
    JOURNAL OF IMMUNOLOGY, 2022, 208 (01):
  • [3] Gene detection and expression profiling of Neisseria meningitidis using NanoString nCounter platform
    Tekletsion, Yenenesh K.
    Christensen, Hannah
    Finn, Adam
    JOURNAL OF MICROBIOLOGICAL METHODS, 2018, 146 : 100 - 103
  • [4] Molecular classification with NanoString nCounter system in triple-negative breast cancer.
    Ahn, Sung Gwe
    Kim, Seung Joon
    Lee, Hak Woo
    Yoon, Hyo Jeong
    Kim, Chungyeul
    Jeong, Joon
    JOURNAL OF CLINICAL ONCOLOGY, 2017, 35
  • [5] Development and Validation of a Parsimonious Tuberculosis Gene Signature Using the digital NanoString nCounter Platform
    Kaipilyawar, Vaishnavi
    Zhao, Yue
    Wang, Xutao
    Joseph, Noyal M.
    Knudsen, Selby
    Babu, Senbagavalli Prakash
    Muthaiah, Muthuraj
    Hochberg, Natasha S.
    Sarkar, Sonali
    Horsburgh, Charles R. Jr Jr
    Ellner, Jerrold J.
    Johnson, W. Evan
    Salgame, Padmini
    CLINICAL INFECTIOUS DISEASES, 2022, 75 (06) : 1022 - 1030
  • [6] Rapid gene fusion testing using the NanoString nCounter platform to improve pediatric leukemia diagnoses in Sub-Saharan Africa
    Gastier-Foster, Julie M.
    Lutwama, Fredrick
    Mbabazi, Olive
    Mlenga, Steven
    Ulaya, Kennedy
    Namazzi, Ruth
    Hollingsworth, E. Faith
    Lopez-Terrada, Dolores
    Fisher, Kevin E.
    Roy, Angshumoy
    Allen, Carl E.
    Poplack, David G.
    Mzikamanda, Rizine
    Ozuah, Nmazuo
    Wasswa, Peter
    FRONTIERS IN ONCOLOGY, 2024, 14
  • [7] MOLECULAR CLASSIFICATION OF MEDULLOBLASTOMAS: NANOSTRING NCOUNTER ASSAY VS A COMBINATION OF IMMUNOHISTOCHEMISTRY AND FLUORESCENCE IN-SITU HYBRIDISATION
    Kaur, Kavneet
    Pathak, Pankaj
    Jha, Prerana
    Garg, Ajay
    Suri, Vaishali
    Sharma, Mehar C.
    Suri, Ashish
    Sarkar, Chitra
    NEURO-ONCOLOGY, 2018, 20 : 140 - 140
  • [8] miRNA and mRNA detection in plasma-derived extracellular vesicles (EVs) using the nCounter NanoString platform
    Bracht, Jillian Wilhelmina
    Gimenez-Capitan, Ana
    Huang, Chung-Ying
    Pedraz-Valdunciel, Carlos
    Valarezo, Joselyn
    Warren, Sarah
    Rosell, Rafael
    Molina-Vila, Miguel Angel
    CANCER RESEARCH, 2020, 80 (16)
  • [9] Development and Evaluation of a Pan-Sarcoma Fusion Gene Detection Assay Using the NanoString nCounter Platform
    Chang, K. T.
    Goytain, A.
    Tucker, T.
    Lee, C.
    Nielsen, T. O.
    Ng, T. L.
    JOURNAL OF MOLECULAR DIAGNOSTICS, 2017, 19 (06): : 1012 - 1012
  • [10] Development and Evaluation of a Pan-Sarcoma Fusion Gene Detection Assay Using the NanoString nCounter Platform
    Chang, Kenneth T. E.
    Goytain, Angela
    Tucker, Tracy
    Karsan, Aly
    Lee, Cheng-Han
    Nielsen, Torsten O.
    Ng, Tony L.
    JOURNAL OF MOLECULAR DIAGNOSTICS, 2018, 20 (01): : 63 - 77